
1

Prof. Dirk Stroobandt

Dr. Mark Christiaens, ir. Hendrik Eeckhaut, ir. Harald Devos

Research Group PARIS
Department ELIS
Ghent University

Designing
Reconfigurable Hardware

for a Scalable
Wavelet Video Decoder

2

Overview

■ The RESUME project: motivation and goals

■ Scalable video characteristics

■ Software transformations

■ Hardware implementations of basic components

■ QTL and hardware: the conflicts

■ A new Wavelet Entropy Codec

■ Results

■ Conclusions and future work

3

RESUME project

RESUME

Reconfigurable Embedded Systems

for Use in scalable Multimedia Environments

http://www.elis.UGent.be/resume/

Theme: reconfigurable hardware Theme: multimedia systems negotiation

Theme: video information (de)coding.Theme: operating system/middleware layer.

4

RESUME users' committee

5

Context

Conflict

Multimedia applications
(on mobile terminals)

Demand flexibility,
changes during execution

Software (SW)

Very flexible
Low parallelism
Too slow

Demand huge
computational power
(real time)

Hardware (HW)

Fixed
High parallelism

Too expensiveOther option: FPGAs

“Field Programmable Gate Array”:
Large array of hardware blocks
with reconfigurable functions and
interconnections

Flexible
High parallelism

Ideal

6

Context

■ Why is so much flexibility needed?
 Time multiplexing of hardware resources

 Application Specific HW accelerator is useless if applications are

not known beforehand

 New applications emerge and terminal has to be able to run them

 HW is tailored to each application that runs: efficiency

 Scalable applications to change QoS to the needs of the moment

?

7

Project goals

■ Main goal:
 To demonstrate the feasibility and the benefits of using

reconfigurable hardware to deliver scalable quality of service to

multimedia handheld devices

■ Requirements
 Content provider must know the expected performance of the HW

(negotiation protocol)

 Accurate management of the resources (middleware layer)

 Introduction of scalability of application and multimedia content

 Reconfigurability of the underlying hardware (with performance

estimation)

8

RESUME project overview

■ Success of the project depends on the integration of the different research

aspects
 WP1: Definition of the

architecture/interfaces
➔ Spec. of reconfigurable HW

➔ Spec. API platform/MW

➔ Spec. API application/MW

➔ Terminal description

➔ Profiling video codecs

 WP2: Negotiation
➔ Content description framework

➔ Negotiation protocol definition

 WP3: Design and management of

reconfigurable applications
➔ Design scalable video codecs

➔ Development MW services

➔ Management FPGA reconfiguration

 WP4: Demonstrator

WP3

WP1

WP2

Application

Negotiation Middleware

Software
Hardware

Interface

9

Project focus of PARIS

■ Specification and evaluation of reconfigurable HW
 Enable execution of scalable video codecs on the HW, therefore

 Study the performance requirements of the FPGA hardware
➔ From the application’s footprint

➔ Performance, memory, throughput, etc.

 Evaluation of the benefits of reconfigurability
➔ Trade-off between improved flexibility and overhead of reconfiguration /

performance loss

➔ Use performance estimates for evaluating different FPGA

implementaqtions

 Study the required amount of reconfigurability
➔ For different tasks

➔ For downscaling/upscaling performance (negotiation)

➔ Partial reconfigurability

10

Project focus of PARIS

■ Reconfigurable HW parameterisation and evaluation
 Goal: set of configuration bit strings, together with parameters

indicating performance capabilities (used for task allocation)

 Hardware parameterisation

 Study relations between configurations for scaling of tasks

 Study Pareto-optimal configurations

Pareto-optimal solution

Pareto front/curveInfeasible region

Inferior results

11

Project focus of PARIS

■ Management of FPGA reconfigurations
 What is the best way to reconfigure the FPGAs?

 Reconfiguration by choosing a pre-computed bit stream
➔ Limits use of FPGA to pre-known set of applications (better than 1!)

 Partial reconfiguration

 Also study possibility to include FPGA configuration software on

the processor
➔ Not for run-time reconfiguration but for pre-reconfiguration for a new task

➔ Should only be done once for each additional task (added to database)

011010010010110010010010110111110
101011010100101010001011110110110
110010001001110110110110110101111
010010010000101001010111100011011

12

Overview

■ The RESUME project: motivation and goals

■ Scalable video characteristics

■ Software transformations

■ Hardware implementations of basic components

■ QTL and hardware: the conflicts

■ A new Wavelet Entropy Codec

■ Results

■ Conclusions and future work

13

Scalable video

Quality ~ deployed hardware resources

Grayscale

Lower image
quality

Decode according to
required QoS or available

hardware resources

Encode
once

Lower frame
rate

Lower resolution,...

14

Overview video codec

Motion
Estimation

Wavelet
Transform

Entropy
Encoding

Motion Vector
Encoding

P
a
c
k

Motion
Comp.

Inverse
Wavelet T.

Entropy
Decoding

Motion Vector
Decoding

U
n
p
a
c
k

Pull
bitstream

Uncompressed
frames

Decompressed
frames

Motion
Estimation

Wavelet
Transform

Entropy
Encoding

Motion Vector
Encoding

P
a
c
k

Motion
Comp.

Inverse
Wavelet T.

Entropy
Decoding

Motion Vector
Decoding

U
n
p
a
c
k

Pull
bitstream

15

Split into GOPs

■ Videostream = sequence of frames

■ Split and process per GOP (Group Of Pictures)

of 16 frames

tijd

time

Reference frame Reference frame

16

Motion estimation

=> vectors + error frame

17

Motion compensation

Reference frame
current GOP

Reference frame
next GOP

timeScalability in time

18

Overview video codec

Motion
Estimation

Wavelet
Transform

Entropy
Encoding

Motion Vector
Encoding

P
a
c
k

Motion
Comp.

Inverse
Wavelet T.

Entropy
Decoding

Motion Vector
Decoding

U
n
p
a
c
k

Pull
bitstream

Uncompressed
frames

Decompressed
frames

Motion
Estimation

Wavelet
Transform

Entropy
Encoding

Motion Vector
Encoding

P
a
c
k

Motion
Comp.

Inverse
Wavelet T.

Entropy
Decoding

Motion Vector
Decoding

U
n
p
a
c
k

Pull
bitstream

19

Wavelet transform

Scalability in resolution

20

Overview video codec

Motion
Estimation

Wavelet
Transform

Entropy
Encoding

Motion Vector
Encoding

P
a
c
k

Motion
Comp.

Inverse
Wavelet T.

Entropy
Decoding

Motion Vector
Decoding

U
n
p
a
c
k

Pull
bitstream

Uncompressed
frames

Decompressed
frames

Motion
Estimation

Wavelet
Transform

Entropy
Encoding

Motion Vector
Encoding

P
a
c
k

Motion
Comp.

Inverse
Wavelet T.

Entropy
Decoding

Motion Vector
Decoding

U
n
p
a
c
k

Pull
bitstream

21

Entropy encoding

Wavelet
Transform

Entropy
Encoding

Reference frame

Scalability in quality

22

Quad tree

1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0

0

0

00 0

0

0

0

0

0

00

0

00 0

0

00 0

Tree is encoded in a symbol stream (0 of 1) and
compressed with an arithmetic encoder

23

Quadtree limited algorithm

■ Quadtree does not descend to pixel level,

but stops at a certain blocksize

■ All significant pixels in a signifance list

(linked list)

24

Quadtree limited algorithm

■ Pixels that are already significant (from

higher bitplanes) are refined

■ Information from surrounding pixels in

higher bit planes is used to encode lower bit

planes

25

Quadtree limited algorithm

Quadtree Model Selection
Arithmetic
Encoder

0.3 0.7

0.4 0.6

0.45 0.55

0.5 0.5

0.6 0.4

0.7 0.3

26

Quadtree limited algorithm

27

Quadtree limited algorithm

28

Quadtree limited algorithm

29

Overview

■ The RESUME project: motivation and goals

■ Scalable video characteristics

■ Software transformations

■ Hardware implementations of basic components

■ QTL and hardware: the conflicts

■ A new Wavelet Entropy Codec

■ Results

■ Conclusions and future work

30

Quality measurement

2 frames: PSNR (Peak Signal Noise Ratio):

2 sequences: mean PSNR

10log10 2552.
3
2
.rows.cols

∑ Y0−Y1
2∑ U0−U1

2∑ V0−V1
2

How to measure quality?

e.g. Different frame rate

But what if sequences are scaled differently?

 Scale down original rate
 Reduced Frame Rate PSNR
(RFR)

Scale up decoded rate
 Full Frame Rate PSNR
(FFR)

(0: original frame; 1: decoded frame)

31

Quality measurement

30 Hz

15 Hz

30 Hz

7.5 Hz

30 Hz

3.75 Hz

1 GOP

15 Hz

30 Hz

7.5 Hz

30 Hz

3.75 Hz

30 Hz

1 GOP

1 GOP (Group Of Pictures) = 16 frames

 Scale down original rate
 Reduced Frame Rate PSNR
(RFR)

Scale up decoded rate
 Full Frame Rate PSNR
(FFR)

32

Quality vs. execution time

0 25 50 75 100 125 150
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5
40

42.5
45

47.5
50

52.5
55

57.5

Two ways for PSNR
Foreman (CIF, 288, 30Hz)

PSNR-FFR (tlev1)

PSNR-FFR (tlev2)

PSNR-FFR (tlev3)

PSNR-RFR (tlev1)

PSNR-RFR (tlev2)

PSNR-RFR (tlev3)

PSNR (tlev4)

execution time (s)

P
S
N

R
 (

d
B

)

Bitrate↑

(metric for necessary hardware resources)

33

Quality vs. execution time

0 25 50 75 100 125 150
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5
40

42.5
45

47.5
50

52.5
55

Two ways for PSNR
Foreman (CIF, 288, 30Hz)

PSNR-FFR (tlev1)

PSNR-FFR (tlev2)

PSNR-FFR (tlev3)

PSNR (tlev4)

execution time (s)

P
S
N

R
 (

d
B

)

Bitrate↑

(metric for necessary hardware resources)

34

External requirements

 We want to be able to fully (up to lossless) decode video:
➔ Frame rate: 30 Hz

➔ Frame size: QCIF (176 x 144) and possibly CIF (352 x 288)

➔ Corresponds to video bandwidth of up to 1.09 MiB/s for QCIF

and 4.35 MiB/s for CIF

➔ Seamless support for higher performance once/if better

hardware is available

 Cost
➔ Memory: maximum amount of memory required at one time

➔ Computations: number of operations per second

➔ Bandwidth: communication between components

35

Code profilation

Profilation Decoder

First Profilation
(CIF)

Foreman (QCIF) Foreman (CIF)
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

ex
ec

ut
io

n
tim

e
(s

)

On a Pentium IV 2.0 GHz

Motion compensation

Entropy decoding
Inverse wavelet transform

First profilation
(CIF)

Foreman (QCIF) Foreman (CIF)
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Relative execution time Absolute execution time

36

Software transformations

 Generic:
➔ Floating point → integer operations:

no loss in quality
➔ More efficient memory use

 Quadtree:
➔ Better datatype choice
➔ Code transformations towards a hardware implementation

 Wavelet:
➔ Remove irrelevant calculations
➔ Use symmetry

 Motion Compensation:
➔ Completely rewritten towards a hardware implementation
➔ Scalable in time and resolution
➔ Compensation of CIF-frames real time (Pentium IV 2 GHz)

37

Memory requirements

41.03%

7.75% 13.68%

21.65%

15.63%
Reorder buffer

Interpolation

Motion
compensa-
tionInverse wavelet
transform

Quadtree
decoder

Arithmetic
decoder

QCIF: 0.5 MiB, CIF: 2.11 MiB: not a problem

38

Computational requirements

■ AD: very small

■ QT: small but probably memory bound

■ IWT: 261.12 106 additions/s and 274.03 106

multiplications/s for CIF

■ MC: 6.08 106 additions/s for CIF

■ Other components are negligible

39

Component bandwidth

5.59%

60.87%

11.18%

11.18%

11.18%

Bandwidth to the component

Reorder buffer
Motion compensa-
tion

Inverse wavelet
transform

Quadtree decoder

Arithmetic decoder

QCIF: 19.46 MiB/s and CIF 77.81: MiB/s

■ Bandwidth reorder buffer largest

■ Worst case internal bandwidth of QT very bad:

426.36 MiB/s

40

Overview

■ The RESUME project: motivation and goals

■ Scalable video characteristics

■ Software transformations

■ Hardware implementations of basic components

■ QTL and hardware: the conflicts

■ A new Wavelet Entropy Codec

■ Results

■ Conclusions and future work

41

Our board

256 MiB PC333
DDR SDRAM

PCI interface
64 Mibit Flash

JTAG, Ethernet,
Serial IO

Switches and indicators Altera Stratix

42

The FPGA

Altera EP1S25

■ 25660 Logic Elements

■ Memory hierarchy: (1.944.576 bits)
 224 M512 RAM blocks (512 bit +

parity)

 138 M4K RAM blocks (128 x 36 bits)

 2 MegaRAM blocks (4Ki x 144 bits)

■ 10 DSP blocks (4 18bit multipliers

each)

■ 6 PLLs

43

Modular design

Modular Design

pc
i_

m
t6

4
M

eg
aC

or
e

P
C

I C
on

tr
ol

 lo
gi

c

S
D

R
A

M
 C

on
tr

ol
le

r

S
D
R
A
MP

C
I b

us

re
gi

st
er

s IDWT

•
•
•

33 MHz 133 MHz

66 MHz

44

Modular design

■ Independent access to PCI and RAM

■ New modules can be added

■ Communication with PC is memory-mapped (via two

Linux drivers)

■ Simple to change from a hardware to a software

implementation

■ Interrupts, DMA

45

Overview video codec

Motion
Estimation

Wavelet
Transform

Entropy
Encoding

Motion Vector
Encoding

P
a
c
k

Motion
Comp.

Inverse
Wavelet T.

Entropy
Decoding

Motion Vector
Decoding

U
n
p
a
c
k

Pull
bitstream

Uncompressed
frames

Decompressed
frames

Motion
Estimation

Wavelet
Transform

Entropy
Encoding

Motion Vector
Encoding

P
a
c
k

Motion
Comp.

Inverse
Wavelet T.

Entropy
Decoding

Motion Vector
Decoding

U
n
p
a
c
k

Pull
bitstream

46

Motion compensation

■ Floating point → integer operations: no quality loss

■ Scalable in time and resolution

Quality of lower resolution decoded sequences strongly depends on

quality of Motion Estimation

■ Sub pixel interpolation with shorter filters: less

computations and memory accesses (but also reduced

quality)

■ Better than real time on Pentium 2 GHz

47

Wavelet transform

■ Used to test
 modular design

 design flow (SystemC → VHDL → FPGA)

■ First implementation
 short implementation time: not optimal (row/col-wise)

(we are planning a line-based implementation)

HL HHLH

LL HL

48

Wavelet transform

■ Used to test
 modular design

 design flow (SystemC → VHDL → FPGA)

■ First implementation
 short implementation time: not optimal (row/col-wise)

(we are planning a line-based implementation)

HL HHLH

LL HL

49

Inverse wavelet transform

HL

HH

HL

LH

LL

1D-IDWT

1D-IDWT

50

Inverse wavelet transform

P
C

I C
on

tr
ol

 lo
gi

c

S
D

R
A

M
 C

on
tr

ol
le

r

S
D
R
A
M

re
gi

st
er

s

2D - IDWT

33 MHz 133 MHz66 MHz

R
A
M

1D-IDWT R
A
M

FIRFIR

R
A
M

+

 Decoupled I/O and calculations (in parallel at different speeds with
different clocks)

51

Inverse wavelet transform

■ Calculations (3 levels) max f=75MHz
 CIF: 850000 cycl. (17 ms @ 50 MHz)

 QCIF: 235000 cycl. (4.7 ms @ 50 MHz)

■ FPGA usage
 IDWT: 2953 LE (11%), 55kb (2%), 12 DSP block 9-bit

elements (15%)

 modular design + IDWT: 7800 LE (30%)

■ Currently I/O-bound

52

Overview

■ The RESUME project: motivation and goals

■ Scalable video characteristics

■ Software transformations

■ Hardware implementations of basic components

■ QTL and hardware: the conflicts

■ A new Wavelet Entropy Codec

■ Results

■ Conclusions and future work

53

Wavelet Transform

Wavelet
Transform

Entropy
Encoding

Reference frame

54

Quadtree limited algorithm

55

Quadtree limited algorithm

■ Tree encoded in a symbol stream (consisting of 0

and 1) and then compressed using an arithmetic

coder

■ CIF: 31x106 symbols/second (mobile)

■ QCIF: 6x106 symbols/second (foreman)

56

A new Wavelet Entropy Codec?

Quadtree Algorithm

■ Good compression

■ Most quality enhancing bits come first

■ But very complex:
 Arithmetic coder with division

 Linked lists

 Very irregular memory access pattern

 Recursive Quadtree structure

 Large memory footprint

57

Importance of memory

A typical Altera Stratix (EP1S25) FPGA:

Quadtree:
➔ Current bitplane (352x288): 101376bit

➔ Quadtree Structure: ~540 bit

➔ Significance lists : 101376 17bit entries (~198 kiB), probably streamable

Model Selection:
➔ Maps for model selection: 4 x ~12.5 kiB (more than 200 kiB in software

 implementation)

Name Number Size (byte + parity)

MRAM 2 64k

M4K 138 512

M512 224 64

Registers 25660 1/8
214kiB

58

Overview

■ The RESUME project: motivation and goals

■ Scalable video characteristics

■ Software transformations

■ Hardware implementations of basic components

■ QTL and hardware: the conflicts

■ A new Wavelet Entropy Codec

■ Results

■ Conclusions and future work

59

A new Wavelet Entropy Codec

Consider a simpler variant

Wish list:
 Scalability:

➔ Quality → bit layers

➔ Resolution → wavelet bands

 Acceptable compression

 Economical with memory

 Sweet and simple

 High degree of parallelism

60

A new Wavelet Entropy Codec!

Wavelet
Transform

Entropy
Encoding

61

A new Wavelet Entropy Codec!

In parallel

62

A new Wavelet Entropy Codec!

Bitplane

Significance bitmap

Sign bitmap

63

A new Wavelet Entropy Codec!

Bitvalue + model → (CABAC-based) encoder

Wavelet Entropy
Encoder Model Selection

Aritmetic
Encoder

0.3 0.7

0.4 0.6

0.45 0.55

0.5 0.5

0.6 0.4

0.7 0.3

Significance bitmap

Sign bitmap

Current pixel

64

Models

454 different models

This high number is not a problem:

each model needs only a 9 bit state

Models are initialised (warmed up) with values

obtained from training a number of representative

sequences

0

1

1/2

real probability

time

unitialised

trained probability

65

Overview

■ The RESUME project: motivation and goals

■ Scalable video characteristics

■ Software transformations

■ Hardware implementations of basic components

■ QTL and hardware: the conflicts

■ A new Wavelet Entropy Codec

■ Results

■ Conclusions and future work

66

QTL vs. WEE: compression

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

Mobile CIF: QTL vs. WEE

#skipped bitplanes

N
or

m
al

is
ed

 c
om

pr
es

se
d

si
ze

QTL

WEE

Decode all bitplanes Decode 0 bitplanes

Lower is better (smaller)

67

Results

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

QTL vs. WEE

WEE

QTL

#skipped bitplanesCanoa (CIF)
0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

QTL vs. WEE

WEE

QTL

#skipped bitplanesForeman (CIF)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

QTL vs. WEE

WEE

QTL

#skipped bitplanes
0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.8000

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

QTL vs. WEE

WEE

QTL

#skipped bitplanesMobile (QCIF) Stefan (QCIF)

68

Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

15

20

25

30

35

40

45

50

55

60

65

Foreman CIF

PSNR
(QTL)

PSNR
(WEE)

bits/pixel

P
S

N
R

0 1 2 3 4 5 6
10

15

20

25

30

35

40

45

50

55

60

65

Mobile CIF

PSNR
(QTL)

PSNR
(WEE)

bits/pixel

P
S

N
R

69

Conclusion WEE

■ Algorithm is simpler

■ No recursive behaviour

■ Small memory footprint

[2 bitmaps of size(resolutionlayer)]

■ Memory access is more regular

■ Arithmetic coder must process more symbols, but

is simpler and faster (modified arithmetic encoder of CABAC)

■ Compression is better for all bitrates

70

Memory requirements

■ Arithmetic Decoder:
 State Lookup table: 256B

 Range Lookup table: 2048B

 Model state table: 545B

 Buffer

■ Model Selector
 Significance and sign bitmap: 2 x 9504B

 Buffers
 (1 MRAM block is large enough to contain 6 significance and sign bitmaps)

~7 M4K block

~47 M4K blocks

Name Number Size (byte + parity)

MRAM 2 64k

M4K 138 512

M512 224 64

Registers 25660 1/8
214kiB

Arithmetic Decoder
Model selector

71

Overview

■ The RESUME project: motivation and goals

■ Scalable video characteristics

■ Software transformations

■ Hardware implementations of basic components

■ QTL and hardware: the conflicts

■ A new Wavelet Entropy Codec

■ Results

■ Conclusions and future work

72

Conclusions

■ Scalable video codecs have benefits but are

complex, real-time performance is tough goal

■ Reconfigurable implementation is the only way

■ How to compare quality for scalable video?

■ Hardware implementation is bandwidth-limited

■ Some things come for free (simpler can be better)

■ In search of implementation methodology

73

Future work

■ Line based FPGA implementation of IDWT

■ Use rate distortion for efficient rate allocation

■ Fine tune the CABAC arithmetic coder and WEC

■ Implementation in FPGA

■ Learn from implementation results for a priori

estimation/exploration

■ Investigate reconfigurability issues

