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1. Introduction  

Recent advances in technology have permitted more and more hardware resources to be injected 
into new embedded systems. Nevertheless, the applications for which these systems are designed 
(such as MPEG7, UMTS, voice/image recognition programs, etc.) require more and more 
resources, forcing developers of applications for embedded systems to use the fewest hardware 
resources possible. Consequently, faced with this reduction in resources like memory capacity 
and clock frequency, embedded systems can only contain a small set of applications. These 
applications must be both light and non-greedy in terms of execution time. 

In this paper, we focus particularly on Java bytecode compression, and we propose a software 
solution to address the problematic described in the previous paragraph. Our two-part approach 
is an interesting alternative to existing techniques. First, by using a bytecode compressing 
technique, our approach makes it possible for an application to take up less memory in the 
embedded system. In addition, it also allows more applications to be loaded and permits 
applications whose required resources are higher than those of the target embedded system to be 
executed. Second, our techniques can, in some circumstances, speed up the execution of 
embedded applications. 

2. The bytecode factorization method 

Java bytecode factorization consists of replacing the redundant code sequences in the bytecode 
with new instructions, called macro-instructions. Such a technique is made possible by the 
existence of unused instructions in the specification of the Java virtual machine. The macro-
instructions are defined in the macro table and are appended to the ClassFile1 in the optional 
component at the end of the compression process. Thus, the Java virtual machine instruction set is 
enhanced by these macro-instructions, which allows the new instructions to be interpreted. In this 
section, we provide details concerning the factorization process. There are three phases: pattern 
detection, optimal pattern sequence selection and code transformation.  
In this section, we provide details concerning the factorization process. There are three phases: 
pattern detection, optimal pattern sequence selection and code transformation.  
2.1. Pattern detection 

Pattern detection occurs during a single passage of the code. The bytecode is examined, 
instruction-by-instruction, and all the possible patterns and their respective occurrences are 
recorded. A benefit estimation for each of these patterns designates those that have a positive 
effect on the compression ratio, and thus should be kept. The remaining patterns will be ignored. 
This estimation is relevant due to the overlapping of identical or different-sized patterns. Two 
patterns overlap when they have common instructions. The overlapping of two patterns involves 
a benefit reduction of the second pattern. As a direct consequence of this overlapping, the pattern 
benefit can be reduced to zero, and must be excluded from the eligible pattern set. A solution that 
addresses this problem is presented in the following section. 

                                                 
1 A file format that contains standard and personalized components. 
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2.2. Selection of the optimal pattern sequence  

This phase has a direct effect on the compression ratio and consequently on the efficiency of our 
factorization algorithm. Once the set of eligible patterns is defined, the patterns that contribute to 
the compression stage must be determined and their order of application noted. To reach this end, 
all the pattern sequences applied throughout the program to be compressed are represented in a 
tree form. Each tree node represents the original program state after factorization according to a 
given pattern. The original program is at the root of the tree. The path from the root to a node 
indicates the pattern sequencing order. The problem consists in finding the optimal pattern set 
represented by the leaf node that provides the most significant benefit.  

This kind of problem is classified among NP-Complete problems. Consider a tree with a 
branching factor N (the number of eligible patterns). At depth d, there will be N*d nodes. This 
causes an exponential explosion of the tree size. To reduce the complexity and consequently 
determine the optimal solution, we developed two different techniques. The first technique 
precedes tree construction. It is called the dependency analysis technique. The second technique, 
named benefit revaluation, is used progressively during tree construction. 

2.2.1. Dependency analysis 

Since the pattern sequencing order comes into play only when patterns overlap, dependency 
preprocessing is necessary. This preprocessing discerns two types of patterns.  

- Free patterns: a pattern is considered “free”, if it has no overlapping relationship with any 
other pattern. Free pattern order in the final sequence is unimportant since it does not alter the 
remaining pattern benefit. 

- Semi-free patterns: semi-free patterns form subsets according to a dependency relationship. 
Overlapping patterns, with no relation to other patterns outside the set, form a semi-free pattern 
set. Set construction is done recursively.  
Overlapping problem resolution has an exponential factor. Nevertheless, through the use of the 
above dependency analysis technique, the problems resolved are of a lower complexity. 

2.2.2. Benefit revaluation 

The benefit corresponding to each node is progressively revised during tree construction, by 
taking into account the variation in the number of patterns occurring. The branching factor is then 
lower or equal to the number estimated previously. Thus, tree width is reduced. Tree algorithm 
construction starts with all the elements of a semi-free pattern set as parameters, and it continues 
through the following stages:  

Repeat  
While the eligible pattern set of the current node is not empty, do 

-1- choose a pattern among the eligible patterns; 
-2- re-estimate the pattern benefit;  
-3- if the benefit is null, return to stage 1; 
-4- if the benefit is not null, build an offspring node from the current one; compress the program 

according to the selected pattern. Eliminate these patterns from the eligible pattern set of the parent node. 
Then, the current node becomes the offspring node;  

End while 
-5- go back to the parent node and decompress the program according to the offspring node;  

Until the root eligible pattern set is completely treated. 

We reiterate this algorithm, as many times as there are semi-free pattern subsets. 
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2.3. Code transformation  

We replace patterns in the original bytecode by the macros that are assigned to them. Code 
annotations, that allow the embedded JVM to interpret compressed bytecode, are added to the 
macro table. This table is forwarded with the compact code to the embedded support. 
3. Experimental results 

In order to show the effectiveness of our compression technique, we implemented the 
factorization algorithm as well as a performance assessment series. The programs used to support 
our experiments are part of a benchmark called CaffeineMark, version 3.0. They implement a test 
series that measures the speed of the Java programs. This supposes that the application is 
optimally implemented so that the encumbrance of the embedded system on which it is supposed 
to be run is minimal. This feature gave us a credible reference point for comparing our approach 
with other compression techniques. The following table represents the experimental results 
obtained by the application of our factorization program to CaffeineMark package (TAB.1). 

Class name Original size 
(KB) 

Size after 
compression 

(KB) 

Compression 
benefit (%) 

BenchmarkAtom 0.38 0.38 0 
BenchmarkMonitor 0.14 0.14 0 
BenchmarkUnit 4.74 3.45 27 
CaffeineMarkEmbeddedApp 2.62 2.33 11 
CaffeineMarkEmbeddedBenchmark 12.3 7.97 35 
FloatAtom 4.99 3.79 24 
LogicAtom 5.85 3.89 33 
LoopAtom 3.21 2.46 23 
MethodAtom 2.77 2.48 10 
SieveAtom 2.48 2.22 11 
StopWatch 2.22 1.54 31 
StringAtom 2.93 2.82 4 
Total size 44.63 33.47 25 

TAB.1 - Summary table of the results obtained  
An analysis of Table 1 shows that the highest compression ratio (35%) was recorded for a 
relatively large class size. This observation proves that the bigger the class size, the greater the 
probability of finding redundant code sequences in the bytecode. The last line of the table 
establishes a balance assessment for all the classes. Our factorization algorithm reduces the 
overall program size from 44.11 KB to 33.47 KB. This size decrease represents a 25% compression 
benefit, on average. 

These numerical results underscore the value of such a compression technique since the benefit 
achieved is greater than other solutions that do not violate the Java virtual machine specification. 

4. Conclusion 

The studied approach has allowed us to show the significant improvement that can result from 
using a specific bytecode technique. The experimental results obtained by the application of our 
algorithm on a benchmark and an input test demonstrate a reduction of the compression rate by 
an average of 25% and maximum of 35%. These results reflect the relevance of the solutions 
suggested to the problems encountered during the bytecode compression process. Given its 
compression rate, this technique represents a high-performance solution. 

In the following phase of our project, we intend to seek out ways to reduce this loss of speed. 
Aggressive acceleration techniques will be added to our overall optimization strategy. 


