
Locality-Aware Code Generation using EPIC

Extensions

Kristof Beyls∗ Erik H. D’Hollander
Electronics and Information Systems

Ghent University
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

kristof.beyls@elis.UGent.be

Abstract

The memory-processor speed gap has grown so large that in modern
systems accessing the main memory requires hundreds of processor cycles.
Traditionally, a cache hierarchy is inserted between processor and memory
to narrow the speed gap. However, since a cache has no knowledge about
future references, data is stored at all cache levels, even if it exhibits no
locality. Recently, EPIC architectures introduced cache hints which allow
to specify the cache level where data is stored. In this way it is possible
to adapt the allocation and replacement strategy based on the locality of
the instruction.

In order to exploit cache hints, a compiler algorithm is proposed which
calculates the locality of memory accesses. When there is little locality
for a given cache level, the data is not stored at this level, which reduces
cache pollution. The goal is to store the data at the lowest cache level
where it will stay at least until the next access. As a result of the locality-
aware code generation, speedups of up to 20% are measured on a number
of pointer-intensive and numerical benchmarks. Furthermore, the results
of the locality analysis are also used in the instruction scheduling phase
in the compiler, so that the scheduler has a more accurate idea of the true
latency of a load operation at run time. In a set of benchmarks, this leads
to a speedup of up to 57%.

1 Introduction

Typically, for half of the execution time of a program, the processor is stalled
because of cache misses. Despite the large number of researchers which worked
on improving cache behavior in the past, speeding up programs clearly requires
further work on bridging the memory-processor speed gap. In this work, we in-
vestigate how EPIC cache hints can help diminish the effect of memory accesses
with poor locality. EPIC cache hints are annotations to memory instructions,
and come in two flavors: target and source cache hints. The target cache hint in-
dicates at which cache level data should be retained, and the source hint encodes
∗This research is supported by a grant from the Flemish Institute for the promotion of

Scientific Technological Research in the Industry (IWT)

1



CPU CPU

LD_C2_C3

L1

L2

L3

Before execution

L1

L2

L3

After execution

C2

C3

Figure 1: A load instruction with source cache hint C2 and target cache hint C3.
Source hint C2 indicates that the data is expected at cache level 2, while target
hint C3 requires the data only to be kept at cache level 3. As a consequence,
the data becomes the first candidate for replacement in the L2-cache.

the highest cache level where the data is expected to be found. An example of
such cache hints on a load instruction is shown in figure 1. We aim to at least
partially answer two questions:

1. How can a compiler use cache hints to improve cache behavior?

2. An instruction has a fixed target and a fixed source cache hint. However,
different executions of the instruction might request different cache hints.
Is it a serious limitation that all executions of an instruction share the
same cache hint?

2 Reuse Distance as a Locality Metric for Gen-
erating Cache Hints

The selection of appropriate cache hints must be based on the data locality of the
instruction it applies to. We employ reuse distance as a metric for measuring
the locality. The backward reuse distance of a memory access is the number
of memory locations referenced between the current access and the previous
access to the same location. Similarly, the forward reuse distance is the number
of memory locations accessed between the current and the next access to the
same location. The backward reuse distance is used to estimate at which cache
level data is found, and the forward reuse distance enables us to decide at which
cache level data should be kept. In our experiments, cache hints are chosen so
that they indicate the smallest cache level that is larger than the reuse distance
of the access. Further details about the reuse distance metric and its use in
cache hint selection can be found in [2, 1].

3 Reuse Distance Measurement: Profiling ver-
sus Analysis

Before cache hints can be selected, the reuse distances exhibited by the instruc-
tion needs to be measured. We use two alternative methods: profiling and an

2



profiling analysis
• RD distribution per instruction • RD for each access
• measured by instrumenting program • measured by compiler analysis
• only measure RD for • computed polynomial describes

one particular input RD for all possible inputs
• applicable to all sequential • only applicable to programs in

programs the polyhedral model

Table 1: Comparison between profiling and analysis for reuse distance calcula-
tion. RD = reuse distance

analytical calculation. During profiling, for each instruction, a distribution of
its reuse distance is measured. Based on this distribution, a single cache hint
is selected for all the executions of that instruction. In contrast, the analytical
method calculates the reuse distance from the source code. The result of the
analysis is a polynomial containing the induction variables of the iteration space
of the instruction, representing the reuse distance of each execution of the in-
struction. This enables to generate code in which the cache hint is dynamically
tailored for each execution of the memory instruction. The precise working of
profiling and analytical calculation of reuse distances is discussed in [1].

Experiments on a number of programs have shown speedups on an Intel
Itanium processor of 20% after target cache hint generation, and 57% after
source cache hint generation. Furthermore, on average, fixed target hints based
on profiling reduce cache misses by 6.7%, while dynamic cache hints resulting
from analytical calculation of reuse distance remove 11.7% of the cache misses.

4 Conclusion

The exponentially growing speed gap between processor and memory requires
ever more powerful techniques to improve cache behavior. One new method
is using EPIC cache hints, which makes the cache visible to the compiler. By
generating cache hints in the compiler, after doing a locality analysis, programs
were speeded up by 57% maximum, with an average of 7%. Currently, cache
hints in EPIC architectures are defined to be static, i.e. the cache hint associated
with a memory instruction is fixed for all executions of that instruction, even if
its locality varies over time. These static hints resulted in 6% less cache misses.
If the ISA was adapted to also allow dynamic cache hints, the cache misses could
be diminished by 12%.

References

[1] K. Beyls and E. D’Hollander. Compile-time cache hint generation for EPIC
architectures. In Proceedings of the 2nd Workshop on Explicitly Parallel
Instruction Computing Architecture and Compilers (EPIC-2), 2002.

[2] K. Beyls and E. H. D’Hollander. Reuse distance as a metric for cache be-
havior. In Proceedings of PDCS’01, pages 617–662, Aug 2001.

3


