
Compacting Arm Binaries with the Diablo Framework

Dominique Chanet and Ludo Van Put

22 september 2003

1 Introduction

On most embedded systems, memory space and power resources are limited. As a consequence, significant
effort is spent in creating resource-efficient programs for embedded systems. Compilers for embedded systems
usually try to generate the most compact code possible, and libraries for embedded systems are usually quite
a lot smaller than those for general purpose computer systems.
One area of improvement that has in general been overlooked, is the linking process. Recent research [2] has
shown that it is possible to achieve considerable program compaction at link time, as the linker has a view
of the complete program, including libraries, and therefore it is not bound to a number of the conservative
assumptions a compiler has to make. These techniques were however developed for general-purpose architec-
tures, and have not yet been evaluated in the context of an actual embedded platform, using actual embedded
toolchains.
Our aim is to evaluate these techniques for the ARM platform, which is widely used in cell phones, PDAs and
other embedded devices. We use Diablo, a retargetable framework for binary rewriting at link time, that has
recently been developed at the ELIS research group of Ghent University.

2 The ARM architecture

The ARM architecture is very widely used in the embedded market space (according to ARM, 76% of all RISC
processors shipped in 2001 implemented the ARM instruction set). Some examples of widely used embedded
processors based on the ARM instruction set are the Intel XScale and StrongArm processors (mostly used in
PDAs) and the Texas Instruments OMAP (mostly used in cell phones).

Figure 1: Impact of the optimizations

Because of this focus on the embed-
ded market, the ARM architecture
has a number of features that facil-
itate the generation of compact pro-
grams, like conditional execution of
all instructions (this eliminates the
need for jump instructions with ”small”
if tests). Furthermore, in the more
recent revisions of the architecture an
extra instruction set, called Thumb,
has been introduced. Thumb instruc-
tions are only 16 bits wide (half the
size of regular ARM instructions), which
results in even more compact programs.
The downside is that a number of ARM
operations cannot be expressed in a

single Thumb instruction, so the execution time of an application increases slightly with the use of the Thumb
instruction set. Fortunately the two instruction sets can interoperate, so it is possible to use the ARM
instruction set for time-critical pieces of code and the Thumb instruction set for all other parts.

3 Link time compaction with Diablo

Diablo is designed to operate on the information a linker has at its disposition. It reads in all object files
and libraries the program consists of, and links these together. In the process, Diablo gets to know the
exact contents of all data and code sections, how these sections are composed of smaller subsections from

1



the different object files and libraries, and all relocation information that was stored in the object files and
libraries.
Using this information, an interprocedural control flow graph of the complete program is built. This graph is
the highest-level representation of the program in Diablo. On this representation all analyses and optimizations
are performed.

4 Main sources of link time compaction

Figure 2: Compaction results with arm-elf-gcc

Using Diablo a link time compaction prototype
was built for the ARM platform. With this pro-
totype binaries produced with the ARM ADS
toolchain (with the ARM C library), the arm-
elf-gcc toolchain (with the newlib C library)
and the arm-linux-gcc toolchain (with the glibc
library) were compacted. All binaries were gen-
erated for the ARM instruction set, we have
not yet implemented support for the Thumb
instruction set in Diablo. However, it is our
belief that the results will not notably change
for mixed ARM/Thumb programs. The bench-
marks we used were taken mainly from the Me-
diaBench, a benchmark suite that contains pro-

grams that are typically used on embedded systems. We’ve also added results for the ’ Hello World’ - program,
as a ’minimal’ application. Overall compaction results are shown in figure 1, as well as the amount of com-
paction contributed by different optimizations. The compaction for each benchmark is shown per toolchain
in figures 2, 3 and 4.
The major source of optimization is the removal of unreachable code. This is done immediately after the
construction of the interprocedural control flow graph, using the following simple algorithm:

1. add the program entry point to the list of reachable blocks.

2. for each block in the list of reachable blocks:

(a) add all successors of this block to the list of reachable blocks

(b) for all data blocks that can be accessed from this block: add all code blocks that can be reached
from this data block to the list of reachable blocks

3. remove the blocks that cannot be found in the list of reachable blocks from the graph

Step 2a marks all code that can be reached through direct control flow transfers (direct jumps and function
calls), while step 2b marks all code that could possibly be reached through indirect control transfers from
already reachable code.
The second major source of compaction are the results of interprocedural constant propagation. This analysis
is performed on registers only, constants are not propagated through memory, as it is very hard at link time
to gather enough aliasing information to do a propagation through memory. Using the results of this analysis
one can do the obvious things like constant folding and removing idempotent instructions (i.e. instructions
that do not change the state of the program in any way). Much more interesting however are the possibilities
for refining the control flow graph: for a number of conditional branches it is possible to determine which
branch will be taken, so we can remove the other branch. For some indirect branches we will also be able to
determine the exact destination, which allows us to remove a number of unrealisable paths from the control
flow graph. Furthermore, because constant propagation at link time can also propagate addresses, which isn’t
possible at compile time, a number of address calculations can be simplified by reusing the results of previous,
unrelated address calculations. This is something a compiler cannot do, as it does not know the final relation
between addresses that lie in different subsections (the order of the subsections is determined by the linker).
The third significant contribution to code compaction comes from interprocedural liveness analysis. Again,
this analysis is only performed on the values stored in registers, not memory. Instructions that are found to
produce no live values at all are useless and can safely be removed. Compilers usually do a similar optimization
already, but thanks to the whole-program view at link time a number of new possibilities arise. Furthermore,
optimizations like the previously mentioned constant folding also render previously useful instructions useless.



Figure 3: Compaction results with arm-linux-gcc

We’ve also implemented some
other optimizations like branch
forwarding and copy prop-
agation. These are roughly
equivalent to their compiler
counterparts and do not achieve
any significant compaction.
Their primary purpose is to
tie up some ”loose ends” left
behind by the major opti-
misations.
Whereas the maximal com-
paction results for the ADS
and arm-elf-gcc toolkits seem
to vary a lot, the maximal
compaction achieved for the
arm-linux-gcc benchmarks al-

most all lie in the relatively small window between 10% and 12%. The reason for this is that the glibc library
used with this toolchain is several times larger than the ADS and newlib C libraries of the other toolchains.
Consequently, the ratio of application-specific code versus library code in the linux binaries is almost constant.
It is precisely in this library code that the link-time compaction techniques achieve most gain, which explains
the small variance in the compaction results for the linux binaries.

5 Future work

Figure 4: Compaction results with arm ADS

Not all possible compaction techniques
have yet been implemented for the
ARM architecture, so there is still
room for improvement to the com-
paction results already achieved. The
impact of code abstraction and de-
tection and removal of dead data blocks
from the program [1] is one of the
things that should certainly be eval-
uated in the future. There also re-
mains some overhead due to the call-
ing conventions that have to be re-
spected when using library code. This

overhead is partly reduced by Diablo, but additional efforts can be done. In order to remove more of this
overhead, more detailed knowledge about the program’s stack behaviour is needed. An analysis that produces
this information is not yet implemented in Diablo. The impact of the use of Thumb code in programs and its
implications on link-time compaction also deserve some further investigation.

6 Conclusions

Thanks to the interprocedural nature of the analyses and optimizations performed at link time, compaction at
link time can remove some of the overhead introduced by the separate compilation of program source files. The
achieved compaction ranges from 2% to 19% and is for the most part the result of the removal of unreachable
code (both superfluous library code linked in by traditional linkers and code that becomes unreachable as a
result of other optimizations performed at link time).

References

[1] Bjorn De Sutter. Compactie van programma’s na het linken. Doctoraatsthesis, Universiteit Gent, 2002.

[2] Bjorn De Sutter, Bruno De Bus, Koen De Bosschere, and Saumya Debray. Combining global code and data
compaction. In ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems, 2001.


	Introduction
	The ARM architecture
	Link time compaction with Diablo
	Main sources of link time compaction
	Future work
	Conclusions

