
Developing a test frame for distributed systems.

D. Dewolfs

29th August 2003

Abstract

The computational needs of complex numerical pro-
cessing are rapidly growing beyond the capabilities
of regular personal computers or workstations, and
supercomputing solutions are becoming essential for
tackling challenges in research areas like quantum
physics or engineering. Often, distributed comput-
ing platforms offer a solution to these problems. A
specific area of interest is resource scavening, which
uses idle computing resources of non-dedicated ma-
chines for solving various scientific problems. This
paper discusses an attempt to lay the foundations for
a test frame to evaluate the qualities of available so-
lutions in these areas.

1 Basics

To get a clear image of the performance issues in-
volved with the practical application of a distributed
platform to a given problem, it is necessary to design
a system for gathering empiric data to quantify these
performance characteristics. It is the goal of the re-
search discussed in this paper to investigate different
angles on how to implement such a performance pro-
filing system.

Performance, in the context of this paper, is defined
as relative deviation of the measured total wallclock
time needed to complete a single experiment (the na-
ture of an experiment is further discussed below in 3)
from a theoreticaly estimated ideal. As research in
this area advances, this definition will probably be-
come more specific and/or grow in scope as metrics
are added and refined. Conclusions gathered from

an experiment should also discuss the other issues
involved with deploying the system under test, like
ease of use and ease of programming with the sys-
tem, available tools, deployment time and needs etc.
These must be treated separately from the pure per-
formance figures but should not be forgotten when
deciding in favor of a single system.

The test frame should be generic enough to evaluate
the properties of a system under test with regard to
a wide array of problems and the technical needs as-
sociated with them (node intercommunication, large
data tranfers, high-frequency data transfers, highly
heterogeneous computing loads etc.). In order to ac-
complish this goal, the basis of such an abstract test
frame must be founded in a philosophy of simplicity
and maximum abstraction.

2 General approach

A preliminary, proof of concept implementation for
such a test frame was developed to provide a bet-
ter practical insight into the different facets of the
research area. The following paragraphs present an
outline of this implementation.

To test and compare a set of distributed platforms, a
cluster is set up with the necessary software for each
selected system. A basic farmer-worker (FW) data
distribution mechanism is then implemented for each
tested system (FW was chosen primarily because of
it’s simplicity and the origins of this research in inves-
tigating a number of LINDA-spaces[3] based systems
which are naturally suitable to this approach). The
farmer then feeds the systems under test with a set

1



of data packets to be processed by the worker nodes
and the total wallclock time needed for running the
experiment is measured when the farmer node accu-
mulates results for all given packets. Finally, a set of
simple formulae is used to calculate overhead.

3 Generating the test sets

The stated requirements for the testframe bring up a
number of questions : what kind of calculation will
be used for the “benchmark” ? How are the test sets
of data packets generated? What kind of data is sent
in the packets?

To meet the requirement of abstraction, it was de-
cided not to opt for known “popular benchmark al-
gorithms” (e.g. a sorting operation[6] or solving a
Fourier series), but to use a system based on “sleep-
tasks” : tasks that consist of suspending operation of
the running thread for a predetermined duration (as
per the “sleep”-function in UNIX). This has the added
benefit that the amount of time to be “slept” can be
used as an absolute metric for the “execution weight”
of a given data packet (the weight of the packet on
the operation of the whole system, e.g. as a function
of the amount of data to be analysed, it’s complexity
with regard to calculation, etc.) and for aproximating
the expected total wallclock time for the experiment.

Using this approach, it is theoretically possible to cre-
ate multiple profiles of data packet sets (e.g. a set of
data packets of equal weight, a set of packets with
“roughly” equal weight, a set of packets with weights
that grow as the experiment progresses, an uneven
mix of packets with greater and smaller weights etc.).
Using this approach, it is possible to reach the goal
of genericity by providing the ability to build generic
“problem profiles” which can then be run through a
given distributed system. Sleeps also allow for us-
ing the same abstract measurement for “execution
weight” over a heterogeneous set of slave machines
as they will roughly take similar times to complete
over a range many different platforms.

The following input parameters are used for generat-
ing the test sets in the preliminary implementation :
the number of data packets, a mean duration for each
sleep operation associated with a data packet and a
standard deviation, randomly creating a set of pack-
ets with sleep durations spread according to a normal
distribution. The result is a set of sleep durations for
each data packet in the test set, which is then writ-
ten to an XML file for parsing by the software that is
to feed the given RSS at the time of the experiment.
The MPICH experiment

4 First experiments

Data test sets created through the test set generator
were used to feed a basic, proof-of-concept MPICH-
based C implementation of a FW system and similar
systems based upon SUN’s JavaSpaces and the Con-
dor system. A series of experiments was performed
for different sets of generated data, repeated tenfold,
and results were gathered in XML files. A straightfor-
ward analysis of the results was made to reach a con-
clusion on (a) the performance efficiency of the sys-
tems, and (b) usability of the test frame as a tool for
evaluating these qualities. Issues encountered during
deployment of the experiment were also taken into
account for the final conclusion.

The experiments were successfully performed and the
MPICH experiment was able to present conclusions
on the influence of the input parameters on 2 met-
rics : percentile deviation from the estimated total
wallclock time for an experiment and deviation from
the estimated total speedup as the number of slave
processors rises.

5 Future work

It is now necessary to develop further from this ba-
sic framework and add more functionality. The first
thing under investigation is the issue of test sets, and
current research is focusing on creating realistic com-
munication profiles for a number of practical prob-
lems. Another line of investigation to be followed

2



is the inclusion of communication models other than
the FW paradigm. The theoretical models used for
making estimates of the ideal wallclock times and
speedups will also need to be adapted as the variety of
test sets grows : a basic queueing model was sufficient
for the MPICH-based experiment, as it used packets
with roughly equal sleep durations - more complex
situations with sleeps of widely differing length will
require a more complex approach. A last element
under investigation is the capability of adding net-
work and CPU overhead to the cluster model, under
the form of network and CPU parasites and realistic
payloads for the data packets.

References

[1] W. Gropp, E. Lusk and A. Skjellum. A high-
performance, portable implementation of the
MPI Message-Passing Interface standard. Parallel
Computing, 22(6):789-828. 1996

[2] M.J. Litzkow, M.K. Livny and M.W. Mutka. Con-
dor - a hunter of idle workstations. Eight Interna-
tional Conference on Distributed Computing Sys-
tems, San Jose, California:104-111. 1988

[3] S.C. Associates. Linda User’s
Guide and Reference Manual.
http://www.lindaspaces.com/downloads/lindamanual.pdf.
2000

[4] Sun Microsystems. Javaspaces service specifica-
tion version 1.2. Technical Report. 2001

[5] The CoMP website :
http://www.ruca.ua.ac.be/cmp

[6] R.E. Eggen, S. Gwizdak, M. Eggen. SOAP and
XML as Parallel Distributed Environments : An
Empirical Cost/Benefit Evaluation. International
Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’2002).
2002

[7] F. Hancke, G. Stuer, D. Dewolfs, J. Broeckhove,
F. Arickx and T. Dhaene. Modelling overhead in
JavaSpaces. Proceedings Euromedia 2003:77-81.
2003. http://www.ruca.ua.ac.be/hancke.

3


