Investigating the Interaction between Java Programs
and Virtua Machines at the Microarchitectural
Level

A. Georges

L. Eeckhout

K. De Bosschere

Department of Electronics and Information Systems (ELIS), Ghent University
St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{ageorges, leeckhou, kdb} @elis.UGent.be

Abstract— In recent years, Java workloads are becoming in-
creasingly prominent on the entire scale of computing devices,
ranging from small PDA-like systems to high-end web servers. It
becomes thus increasingly important to understand the implica-
tions of all the aspects involved when running Java applications
when a system is designed. This means that first of all, the
interactions between the Java application, its input and the Java
Virtual Machine execution the application should be understood.
The lowest level on which we can try to comprehend how these
components interact is clearly the micro-architectural level. To
do this we measure a number of low-level characteristics such
as the branch behaviour, the cache behaviour, etc. This is done
using the performance counters that can be found on modern
microprocessors. Using statistical analysis techniques such as
Principal Components Analysis and Cluster Analysis, we seek
to gain insights in an understandable way. We conclude that for
small input sets, the behaviour is primarily influenced by the
virtual machine,

I. INTRODUCTION

During the last years, the Java programming language is
taking on a more prominent role in the field of software
development. Java-based applications can be found on large
machines such as web servers, on desktop machines, and
finally on small embedded devices such as printers, PDA’s
and phones. The abundant availability of these applications
also introduced a host of virtual machines capable of running
them.

We distinguish three aspects of a Java workload that can
have a significant influence on the execution behaviour: (i)
the virtual machine, (ii) the Java application, and (iii) the
input to the application. The virtual machine consists of several
closely interacting components, such as the garbage collector,
the compiler, the threading system, etc. Because different
virtual machines employ different strategies, e.g. mixed-mode
interpretation and JIT versus all-out (optimizing) compilation,
the choice of JVM can have a large influence on the observed
behaviour. Similarly, one can expect a gaming application
to behave differently from e.g. a web serving or database
application. Finally, large inputs can impose more strain on
the memory subsystem of the machine, thus influencing the
observed behaviour.

The main question we address is thus the following. How
much of the observed behaviour is due to the JVM, the Java

application and the input? To find an answer to these questions,
we employ the following strategy. First, we gather a large
number of execution characteristic measurements, using the
performance counters of the observed processor. The resulting
data are then analysed using Principal Components Analysis
and Cluster Analysis techniques. These techniques aim to
present a more understandable view on the gathered data by
essentially allowing a reduction in the complexity of the view
on the data.

Il. EXPERIMENTAL SETUP

Our experimental setup consists of three important parts,
(i) the Java applications, (ii) the virtual machines, and (iii) the
hardware platform on which the experiments took place.

We have selected a number of Java applications, coming
from the SPECjvm98?, SPECjbb2000? and Java Grande Fo-
rum?® suites. The SPECjvm98 suite contains mostly client-side
Java applications, such as a compress program, a compiler,
etc. The applications in the suite come with three input set
sizes, s1, s10, and s100. The suite was designed to evaluate
both hardware aspects (CPU, memory, etc.) as software aspects
(virtual machine, kernel activity, etc.) of a Java environment.
We have used the s1 and s100 input sets. SPECjbb2000
is a server-side benchmark focusing on the middle tier of a
three tier (client, business logic, database) system. We have
run this benchmark with 2, 4 and 8 warehouses. Finally,
the Java Grande Forum benchmark suite is intended to study
Java platform performance with so called Grande applications,
that require large amounts of memory and processing power.
We have used four benchmarks (Euler, Search, MolDyn, and
Raytracer) from this suite, with both provided problem sizes.

To run the benchmark applications, we used seven Java
virtual machine configurations, i.e. SUN 1.4.1, Blackdown
1.4.1, IBM 1.4.1, JikesRVM 2.2.0 base and adaptive, JRockit
7.1 and Kaffe 1.0.7. Both the SUN and Blackdown machines
use the SUN HotSpot virtual machine core [Sun02], which
employs a mixed mode (interpretation and JIT compilation)
scheme, with a generational copying garbage collector. The

Thttp://www.spec.org/jvm98
2http://www.spec.org/jbb2000
Shttp://www.javagrande.org

IBM virtual machine also uses a mixed mode strategy, al-
ternating between IBM’s mixed mode interpreter and the
IBM JIT compiler [SOTT00]. Kaffe uses interpretation as
well as JIT compilation. The remaining two machines, i.e.
JRockit [BEAO2] and the JikesRVM [AAATQQ] configura-
tions, use an all-out compilation scheme. This means that
every method is immediately compiled to native code. JRockit
and JikesRVM in adaptive mode gather runtime statistics to
steer further optimized compilation of hot methods, whereas
the JikesSRVM base configuration does not perform extra
optimizations on the native code it compiled the first time
round. JikesRVM has been configured with a non-generational
garbage collector, while JRockit employs a generational copy-
ing scheme.

The hardware platform we selected is an AMD K7 Duron
(model 7) microprocessor [Adv02], running at 1GHz. The
Duron is identical to the classic Athlon, but has a smaller
L2 cache (64KiB instead of 256KiB). The processor has a
64KiB predecoded L1 instruction cache, and a 64KiB L1
data cache. The L1 fully associative TLB’s are also separate
for instructions and data, with 24 entries for the L1 I-TLB,
and 32 entries for the L1 D-TLB. The L2 four-way set-
associative TLB’s are both the same size for instructions and
data, containing 256 entries each. The processor features a
gshare global branch predictor, using 2-bit counters, a 2048-
entry branch target buffer, and a 12 entry return address stack.
Internally, x86 instructions are translated into macro-ops, that
are scheduled on one of the execution units. Results end up
in the load-store units, either for the L1 D-cache (12 entries)
for the L2 D-cache (32 entries).

On this platform we used 34 performance counter events
to measure the execution events. These events can be roughly
divided into six parts: (i) general (retired instructions etc.),
(ii) processor frontend (I-cache and I-TLB events), (iii) branch
prediction, (iv) processor core (stalls), (v) data cache, and (vi)
memory requests seen on the bus. To do this, we used the
perfctr kernel patch® for the 2.4.19 Linux kernel. The main
advantage of using performance counters is that measuring
is possible at native speed. The primary disadvantage is that
the number of events that can be measured simultaneously
is usually limited; in the case of the AMD Duron, only four
events can be measured per run.

I1l. STATISTICAL ANALYSIS

When measuring the execution of a benchmark application,
with 34 performance counter events, the benchmark can be
viewed as a single point in a 34-dimensional space, where
each measured event represents a single dimension. It is very
hard to understand the (dis)similarities between multiple points
in this space because the different events are usually correlated
to some degree. This means that e.g. the Euclidian distance
isn’t a reliable measure to determine (dis)similarity between
two workloads.

“http://user.it.uu.se/ mikpe/linux/perfctr/

A. Principal Components Analysis

To improve the understanding on the relation between
different workloads in the workload space, and to remove the
correlation that exists between events, we use Principal Com-
ponents Analysis (PCA) [JW02]. With PCA, new variables
(Z;) are computed from the original variables (X ;) (these are
the events measured); the former are linear combinations of
the latter. The transformation has the interesting properties that
(i)

COV[Z’i7Zj] =0,i,j € {17 tee 7"}7i 76.7

and (ii) the variance exhibited by the Z;,i € {1, ...
the following rule:

,m} obeys

Var[Z;] > Var[Z,] > ... > Var[Z,] .

This means that Z; accounts for the most variance, and
thus for the most information, while Z,, accounts for the
smallest amount of information. However, no information is
lost, because

ZVar[Xz-] = ZVar[Z,-] .

Usually the first few principal components account for 80%
to 85% of the observed variance in the data. Because the
variance exhibited by the last n — p principal components is
quite small, compared to the variance exhibited by the first
p principal components, the number of components can be
reduced by retaining only the first p components. This reduces
the dimension of the space from n to p.

B. Cluster Analysis

Even for a small number of retained principal components,
it can be quite hard to visualize the data points (just imagine
plotting a 4D or a 6D space), and obtain a clear understanding
of the (dis)similarities between these data points. To overcome
this, we use Cluster Analysis (CA) [JWO02]. The aim of CA is
to cluster data points, where the most closely related points are
clustered first. Each cluster can be represented by a new data
point, that is then used to advance the clustering. We perform
CA of the data points residing in the principal components
space, which allows using the Euclidian distance to measure
(dis)similarity between various data points.

We have used the linkage distance clustering algorithm
which operates as follows. As a starting point for the algo-
rithm, each Java workload is considered as a group. During
each step of the analysis, two groups that lie most closely
to each other, are bundled into a larger group. Thus groups
are gradually clustered until we retain a single group. The
decision on which groups to cluster is based solely on the
(Euclidian) distance between two groups. We have used the
pair-group average linkage distance, which effectively means
that the distance between two groups is calculated as the
average distance between all the members of the the groups
considered.

201._comp ‘ ——

SUN + Blackdown 202_jess |
JRockit ‘ ; j|:|_

Jikes adaptive 202_jess, 227_mtrt | |

Kaffe 209_db, 227_mirt |

Sun + Blackdown + IBM +
Jikes adaptive 213_javac, 228 jack

Sun + Blackdown + IBM 227_mtrt ‘ e N

Kaffe 213_javac —__
IBM 202_jess ——

SUN + Blackdown 228_jack |

209_db ‘

222_mpegaudio

Jikes base

Kaffe 213_javac, 228 _jack |

Fig. 1.

1V. EVALUATION

In Figure 1 we show the dendrogram obtained after per-
forming PCA and CA for the SPECjvm98 benchmark suite
with the s100 input set. We observe two kinds of clusters,
(i) benchmark clusters, where the main influence in directed
by the application being run, and (ii) VM clusters, where
the virtual machine has a large impact on the execution. For
further results, we refer to the poster.

From our experiments, we conclude the following. In gen-
eral, studies should use at least a few virtual machines in order
to obtain reliable results, because the virtual machine itself
may have a significant influence, especially on shorter running
applications. Deciding which benchmarks to use in any study
is of course highly dependent on the topic that is studied,
nevertheless our results give firm indications that it would be
best to use a few benchmarks from multiple suites [EGBO3].

REFERENCES

[AAAT00] B. Alpern, B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind,
S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R.
Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapefio
Virtual Machine. IBM Systems Journal, 39(1):211-238, February
2000.

Advanced Micro Devices, Inc. AMD Athlon Processor x86 Code
Optimization Guide, February 2002. htt p: / / www. and. com
BEA Systems, Inc. BEA Weblogic JRockit—
The Server JVM: Increasing Server-side Per-
formance and Manageability, August 2002.

[Adv02]

[BEAO2]

http://ww. bea. conl product s/ webl ogi ¢/ jrockit.

[EGB03] L. Eeckhout, A. Georges, and K. De Bosschere. How java
programs interact with virtual machines at the microarchitectural
level. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA) 2003, page Accepted for publication, October
2003.

R. A. Johnson and D.W. Wichern. Applied Multivariate Statisti-
cal Analysis. Prentice Hall, fifth edition, 2002.

[IwWo2]

[SOT+00] T. Suganuma,

[Sun02]

Dendrogram for the SPECjvm98 s100 benchmark set, executed on seven virtual machine configurations

T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.
Overview of the IBM Java Just-in-Time compiler. IBM Systems
Journal, 39(1):175-193, February 2000.

Sun Microsystems, Inc. The Java HotSpot Virtual Machine,
v1.4.1, September 2002.

