
Memory Management Replay in DejaVu
Tom Ghesquiere

Ghent University, dept. ELIS
St. Pietersnieuwstraat 41

B-9000 Gent
Tel +32 9 264 3367
Fax +32 9 264 3594

tghesqui@elis.ugent.be

Jong-Deok Choi
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA

Tel +1 914 784 7961
Fax +1 914 784 7455
jdchoi@us.ibm.com

Koen De Bosschere
Ghent University, dept. ELIS

St. Pietersnieuwstraat 41
B-9000 Gent

Tel +32 9 264 3406
Fax +32 9 264 3594
kdb@elis.ugent.be

Abstract— Multithreading makes it hard to use cyclic de-
bugging techniques, due to the non-determinism related to the
concurrent behaviour of such applications. A well known solution
consists of recording an execution and debugging it during
replay. In order to produce a faithful replay, the recorded
information needs to contain enough information to cover all
non-deterministic choices. Java has an extra source of non-
determinism related to the garbage collector of the JVM. This
paper discusses the problems that arise herefrom and describes
the solutions we developed in order to implement a fully
operational memory management replay module, based on the
scheduling replay of DejaVu.

I. I NTRODUCTION

DejaVu is a record/replay framework, developed at IBM
[CS98], [CAN+01]. In its most recent version it replays an
application by recording the points where thread switches were
made and forcing them to happen again at the very same points
during replay. Furthermore, wallclock values are also recorded
and replayed, because these values can also influence thread
scheduling. Other forms of nondeterminism, like file-input, are
not handled because of efficiency, although functionality to do
so is present. Remark however that replaying the thread switch
points only works on a single processor.

DejaVu has been developed for, among others, Jikes RVM
[Jik02]. This virtual machine is almost entirely written in
Java and can therefore benefit from cross-optimization to
improve its performance. Cross-optimization means that the
runtime environment and the application are analysed together,
clearing the road for more intrusive optimization techniques.
Co-running a record/replay functionality with such a virtual
machine can also benefit from the same performance im-
provement. This is exactly what DejaVu does. Unfortunately,
this means that DejaVu, as part of the bigger picture, also
has to behave similarly during record and replay. However,
this imposes that DejaVu should replay itself, which is by
definition impossible. The rest of the paper presents how to
deal with this contradictio in terminis.

II. PROBLEM STATEMENT

Cyclic debugging of multithreaded applications is difficult,
due to the non-deterministic nature of their concurrent be-

haviour. A lot of record-replay mechanisms have been intro-
duced to cope with this kind of difficulty [CGC+03]. Known
sources of non-determinism are: actions by the scheduler,
interrupts, input (e.g. the clock values), and data races. In Java
however, there is an additional source of non-determinism,
namely the invocation points of the garbage collector in a
particular execution. This non-determinism could further influ-
ence the application, for instance in the presence of address-
based hashing techniques.

There are two ways to deal with the non-determinism of
the GC: one could record the execution points at which the
garbage collector is invoked, and re-invoke it during replay at
the very same points, or one could enforce the application
to behave deterministically in accordance to the memory
manager, such that the garbage collector will automatically
be invoked at the same execution points. Both have their own
problems: re-invoking the garbage collector requires that the
replay phase does not use more memory than the original one.
Furthermore, this method can never guarantee the same mem-
ory layout and object references. Deterministically replaying
all the memory allocation operations effectively solves this
problem, but it is not straightforward either: it must be done for
both the application and the instrumentation code. Especially
the latter one is difficult since the instrumentation code for
recording and replaying is necessarily different.

The rest of the paper presents the difficulties of the latter
choice, namely the deterministic memory manager, and the
solutions we developed in order to obtain a fully operational
memory management replay module.

III. E NFORCING IDENTICAL BEHAVIOUR

It seems pretty straightforward that code handling the
recording phase must be as similar as possible to the code
that handles the replay phase. Any inconsistency between them
can influence the virtual machine, causing different behaviour
during record & replay.

However, the record phase and the replay phase are bound
to do different things. For instance, record writes data to a
trace file, while replay reads from it. This leads to unavoidable
differences in code. Luckily, as stated before, in order to
produce a faithful replay, all one needs to do is enforcing the



non-deterministic items to behave deterministically. In the case
of the scheduler for instance, this means enforcing the thread
switches at the same logical execution points, independent of
the different instrumentation. In case of the garbage collector,
this means allocating the same amount of memory at the
same logical execution points, also independently of different
instrumentation code. The next sections show how to enforce
these rules in some of the most interesting situations.

A. Lazy compilation

Usually in Java, methods are not compiled until their first
execution1. Executing different code during record & replay
leads as a consequence to compiling different methods. For
instance reading some trace information from a file uses
different methods as writing that same data. As one may
expect, this also influences the garbage collector. Different
methods will consume a different amount of memory, leading
to different invocation points for the garbage collector, or even
non-deterministic out-of-memory errors.

Former solutions to this problem were based on eager
compilation [CAN+01]. This technique suggests to precompile
every method that could be called from the current executed
one. Since no contemporary JVM supports this type of JIT-
compilation (if this is still JIT after all), and this technique
is not efficient at all either, we chose for another solution.
We precompile every single method that ever could be called
by the instrumentation code, both record and replay. This
way, the memory is still filled exactly the same way in both
modes, while the inefficiency of unnecesary compiled methods
remains restrained to those needed by the instrumentation
code, wich is a very small set.

B. Execution frequencies

Optimizing a particular part of the code in terms of speed
often results in using extra memory. One particular and often
used technique is inlining a method call. An advanced com-
piler could choose to make this trade-off between space &
time only for hot paths, resulting in gaining lots of time while
loosing a small amount of space.

To implement such a strategy, the compiler must collect
some information about the execution frequencies of the
different paths. This could be done at runtime, but to compile
a particular method for the first time, guessing these values is
the only solution.

Knowing all of this, an inconsistency between record and
replay could arise as follows: Suppose one of the gambling
techniques is dividing the frequency at every if-test by 2. Also
suppose the record mode needs more if-tests than the replay
phase. This could result in the code following the recording
instrumentation as being cold, while the code following the
replaying part to be labeled as hot.

1In the presence of an interpreter, even less methods will be compiled

While the hot path through the replay instrumentation
continues, it meets a method call to method X, which can
nicely be inlined. The same method was seen in the previous
recording execution, after following a cold path through the
record instrumentation. But in the latter case, the compiler
didn’t find it necessary to inline, and leaves the method call
as is. This finally could result in compilation of method X
at different execution points during record or replay, or even
worse, in an extra method compilation during the record phase,
leading to the same troubles as in the previous section.

The solution we present herefore is to give the control
flow graph of the recording code and the replaying code an
equal design. This off course follows the general rule that the
recording instrumentation and the replaying instrumentation
must be as similar as possible.

C. Allocation of objects

In fact the above problem can be generalized. Not only
methods need space during a program execution, but also
objects and local variables. The problem of local variables was
already solved in [CAN+01]. Different instrumentation code
could use a different amount of local variables & stack slots.
[CAN+01] presented to preallocate the stack with a certain
estimated size that certainly covers all needs during both the
record and replay phase.

The allocation of objects is another problem however. Using
a similar technique as for local variables would be to do a
garbage collection before entering the record/replay dependent
code. One will certainly notice that this is a very expensive
solution, that won’t even work.

Executing dummy allocations of the objects that are only
used in the other mode may look as a possible solution at
first sight, but there is more. Allocations must also be done
in the exact same order, especially in relation to the possible
thread switch points. Suppose you’re 20 kiB away from a new
garbage collection. The order of allocating 2 objects of 10
and 30 kiB each can make a big difference for the execution
behaviour. Calls to library code, like writing to the tracefile,
make this solution even harder, as you cannot insert dummy
allocations in library code. The only way out here is to restrict
the use of library code to non-allocating methods. As one
might notice, this becomes pretty implementation dependent.
In our solution however we were not restricted by this demand.

IV. EVALUATION

In order to prove that this replay mechanism actually works,
we have tested it on several multithreaded benchmark applica-
tions. The different execution times of these applications can
be found in Table 1.

MTRT is actually 227 mtrt, the multithreaded Ray Tracer
from the JVM98 benchmark suite. The mentioned timings
in Table 1 is however not the time reported by the JVM98
application, but the total execution time. This is because, as



original recording recording replaying replaying
execution (s) execution (s) overhead (%) execution (s) overhead (%)

MTRT 26.44 37.67 42.46 37.21 40.72
Monte Carlo 39.47 43.91 11.24 43.58 10.42
Moldyn 170.48 193.99 13.79 193.04 13.23
JBB 1311.02 1345.14 2.60 1346.23 2.69

TABLE I

TIMING MEASUREMENTS

DejaVu replays the wall clock, the replayed benchmark test
reports that is has run exactly as long as the recorded one. It
doesn’t know any better.

Monte Carlo and Moldyn are two multithreaded applications
from the Java Grande suite, which we ran both with 10
threads. Here too, we didn’t use the reported performance
measurements, but the actual execution time. Remark however
that the performance slowdown of the record phase resembles
pretty much the overhead in execution time.

JBB is the JBB2000 benchmark, ran with standard input
parameters, namely 8 warehouses, 30 sec. rampup & 2 min.
of transaction time.

As one can see, the overhead significantly drops with longer
execution time. DejaVu has a high impact on the compilation
time. While most of the applications are pretty small programs,
they spend relatively much time compiling, wich explains the
high overhead. A small overhead of 2% remains however
during large applications.

Although one might think that performance measurements
are important, the most important thing is that the recorded
execution and the replaying execution actually produce the
same results. The above timing measurements are definitely
susceptible for optimization, but one thing is not changeable,
namely that all applications generate exactly the same output
during record and replay. For the Java Grande and the JVM98
benchmarks for instance, this means that they produce exactly
the same performance measurements. With JBB, this means
the same amount of transactions, thread spread, heap usage,
sequence of started warehouses and so on.

V. CONCLUSIONS& FUTURE WORK

With this paper, we have revealed some of the difficulties of
a record/replay tool in the presence of a garbage collector. For
each one, we have presented a solution. We have also shown
that our proposals actually work for modern virtual machines,
and with an acceptable overhead.

In the future, we should design a debugging platform on
top of our record/replay framework. This way one could
easily follow variables, place breakpoints and so on. The most
difficult obstacle will probably be the influence of the debugger
on the virtual machine, as this could also disturb the replayed
execution. A good start is already given by [ACN+01].

REFERENCES

[ACN+01] Bowern Alpern, Jong-Deok Choi, Ton Ngo, Manu Sridharan,
John Vlissides, and Hytm-Gyoo Yook. A Debugging Platform
for Java Server Applications. Technical Report RC22036, IBM
Research Division, IBM T.J. Watson Research Center, P.O. Box
704, Yorktown Heights, NY 10598, April 2001.

[CAN+01] Jong-Deok Choi, Bowen Alpern, Ton Ngo, Manu Sridharan,
and John Vlissides. A Perturbation-Free Replay Platform for
Cross-Optimized Multithreaded Applications. InProceedings of
the 15th IEEE International Parallel & Distributed Processing
Symposium, San Fransisco, April 2001.

[CGC+03] F. Cornelis, A. Georges, M. Christiaens, M. Ronsse, T. Gh-
esquiere, and K. De Bosschere. A Taxonomy of Execution Replay
Systems. In V. Milutinovic, editor,International Conference on
Advances in Infrastructure for Electronic Business, Education,
Science, Medicine, and Mobile Technologies on the Internet,
pages CD–ROM paper 59, L‘Aquila, 7 2003.

[CS98] Jong-Deok Choi and Harini Srinivasan. Deterministic Replay
of Java Multithreaded Applications. InProceedings of the
SIGMETRICS Symposium on Parallel and Distributed Tools,
pages 48–59, Welches, Oregon, August 1998. ACM Press.

[Jik02] The JikesTM Research Virtual Machine, User’s Guide, December
2002.


