
MODELLING OVERHEAD OF DISTRIBUTED SYSTEMS
USING STATISTICAL TECHNIQUES

Frederic Hancke, Frans Arickx, Jan Broeckhove and Tom Dhaene
Department of Mathematics and Computer Science

University of Antwerp, Belgium
frederic.hancke@ua.ac.be

ABSTRACT

This contribution is an attempt to model the overhead of
distributed systems using appropriate statistical techniques.
The communication and platform dependent overhead of
different distributed systems are estimated by comparing
experimental and model-based data.

INTRODUCTION

In our research group CoMP (Computational Modelling
and Programming) research is done in the field of com-
putational science, aimed at understanding physics and
engineering problems through modern modelling tech-
niques, using new software development paradigms and
advanced mathematical techniques.

Many problems, as in the area of quantum physics, often
involve very intense and large computations. Therefore,
distributed platforms, such as JavaSpaces [7], MPICH [3]
(an MPI [8] implementation), etc. provide a better and faster
solution. The goal of our project is to characterise different
existing platforms for certain kinds of calculations.

The process of testing distributed systems could be
illustrated with a cycle. The first step is to define the test
to be performed, the second to run the test and the third to
analyse the results obtained from the test. The analysis may
detect interesting areas for further investigation which leads
to redefining the test and thus concluding the cycle.

This contribution is a first attempt at modelling overhead
of distributing tasks in JavaSpaces, a Linda tuple spaces [5]
implementation. Firstly, a framework for easily building
distributed applications using the tuplespaces paradigm, in
particular farmer-worker applications, will be discussed.
Secondly, the setup of the testcase will be explained, and
finally, results of the tests performed are analysed.

FRAMEWORK

In our research activities we are often confronted with the
question which distributed platform to choose for a certain
calculation, often based on its brute performance. Therefore,
different distributed systems have to be set up and tested. In

the past, separate implementations for different platforms
had to be made. The framework briefly discussed here has
been developed to minimize the extra work when writing
a test for a different, previously not tested, distributed
platform.

The framework has been developed in Java using the
farmer-worker pattern with a communication concept of
tasks and results. The first being distributed by the farmer
and processed by the worker. The latter being returned by
the worker upon finishing task processing, and collected by
the farmer. The underlying communication system is based
on the tuple spaces paradigm. Thus, tasks and results are
being sent between farmer and workers using the concept
of a space with basic operations read, write and take. This
means farmer and worker do not communicate directly with
each other, but rather via a space, although this could be
forced using appropriate task descriptions. As distributed
systems other than tuple space implementations could also
be plugged in, at least when providing the three basic
operations, the framework will not be perfect for these. The
reason for this is of course that distributed platforms such as
MPICH use concepts (like direct message passing) that are
very different from tuple spaces.

The architecture of this framework consists of layers.
As previously mentioned, the framework is implemented
in Java. The first layer around Java provides the structure
for building farmer-worker applications using a task-result
communication via a space. The outer layer provides a frame
for testing platforms using XML based sleep tasklists [9].
When using this framework, a couple of methods/classes
need to be implemented or extended.

TESTCASE FOR JAVASPACES

The aim of this testcase is to find out whether JavaSpaces
is a good potential candidate to solve high performance
calculations, such as the quantum physics problems men-
tioned in the introduction. Other platforms such as MPICH,
TSpaces [4, 12] and GigaSpaces [1] will be tested the same
way in the near future. Besides the platforms functionality,
we are also interested in its performance measured against a
simple formula.



JavaSpaces

JavaSpaces is one of many implementations of the so
called Linda Spaces distributions concept. The underlying
idea is that objects can be thrown into a virtual space and
taken out, or simply read, by any object connected with the
space. Many distributed platforms have been built using
this idea. Other implementations, besides JavaSpaces, are
TSpaces and GigaSpaces.

JavaSpaces was built on top of Jini [2, 6] as a service of
the Jini technology. Its functionality was kept very simple,
but nevertheless is very powerful. In fact there are only
three basic actions on the JavaSpace itself:write to write an
objectinto the space,read to read an object from the space,
but leaving the objectin the space, andtake to take an object
out of the space. There is a fourth operation possible, but
this one does not really perform on the space:notify , which
notifies an object of objects being added to the space.

Setup

In total, five machines have been used to perform the
tests. One Intel PII 400 for the HTTP server, RMI Acti-
vation Daemon, Lookup service, JavaSpace service and
the farmer, and four Intel PIV 1.7, each for a separate worker.

Measures

The tests have covered different values (in the near future,
tests will be performed with more different values forw and
t) for four different parameters. These are:

• w: the number of workers (w ∈ {1, 2, 3, 4}),

• t: the number of tasks (t ∈ {10, 50, 100}),

• m: the mean (inms) of the Gauss distribution for tasks
(m ∈ {1, 10, 100, 500, 1000, 2000, 5000, 10000}), and

• v: the standard deviation (as a percentage ofm; 0 ≤
v ≤ 100) of the Gauss distribution for tasks (v ∈
{1, 2, 5, 10, 20, 30}).

Thus, for every combination oft, m and v, a tasklist
has been generated, except for the combinations ofm = 1
for all v, and m = 10 with v ∈ {1, 2, 5}. For these
combinationsmv becomes real. Instead, tasklists form = 1
and m = 10 were generated with task durationm for all
tasks. So a constant distribution was used instead of the
normal distribution.

This means123 different tasklists were generated. Ex-
ecution of the farmer-worker process with a given tasklist
resulted in one value representing the durationwct (wall-
clock time) of the whole process. Every test ran10 times
for each tasklist and for eachw, resulting in4920 data points.

Statistical Analysis

As the data set for evaluating JavaSpaces is, as mentioned
in the previous subsection, not yet complete, we will give a
first brief analysis in this subsection.

First, the mean duration of all tasks in one tasklist was cal-
culated. This was done to prevent using the theoretical mean
that was used to generate the tasklist, because this would cor-
rupt further calculations. A simple formula was used to get a
first indication of the performance of JavaSpaces:

T = d Ntask

Nwork
eTtask (1)

whereNtask denotes the number of tasks,Nwork the num-
ber of workers, andTtask the mean duration of one task (note
that this is the most simplistis form of approximating the real
execution time in distributed systems). In the rest of this sec-
tion we work with the overhead of distributing one task in
JavaSpaces, which is given by

wct− T

t

As robustness of data sets [10] is not self-evident, we
first took out a number of potential outliers.Boxplotsand
Stem-and-Leaf Plotsare two possible methods to identify
potential outliers. Each of these does not necessarily produce
the same results. The decision which outliers will finally be
discarded, is up to the user. Each potential outlier must be
investigated carefully and may only be discarded if there is
a good reason. In our case, occasionally high network or
processor load might be good reasons.

The method we used is that of boxplots. Using these,
one can distinguish potentialmild outliers from potential
extremeoutliers. A data point is marked as a mild outlier if
d < Q1 − 1.5IQR or d > Q3 + 1.5IQR [11] with d the
value of the data point,Q1 andQ3 respectively the first and
the third quartile andIQR = Q3 − Q1 the interquartile
range. A data point is marked as an extreme outlier if
d < Q1 − 3IQR or d > Q3 + 3IQR (remark that extreme
outliers are also mild outliers).

This technique was applied on our data set. Table 1 shows
a comparison of the resulting statistics. The table shows a
significant difference between the mean, standard deviation,
minimum and maximum using the complete data set (ALL)
and using the complete data set discarding extreme outliers
(ALL - EO). The median,Q1 andQ3 shrink only slightly,
which means that the complete data set was corrupted
by only a few (171) data points. The difference between
discarding extreme outliers and discarding mild outliers
confirms this. As it is better to discard as few data points as
possible, we will use the complete data set discarding only
the extreme outliers in the rest of this subsection.



ALL ALL - EO ALL - MO

N 4920 4749 4589
N (%) 100.00 96.52 93.27
Mean 50.5536 41.1575 39.8202
Median 40.0600 39.2000 38.7000
Std. Deviation 184.1168 30.8262 26.5052
Minimum -559.60 -75.00 -34.30
Maximum 11859.77 168.03 113.20
Q1 20.3550 20.1300 20.2450
Q3 57.4950 56.1300 55.0000

Table 1: Statistics on the overhead (inms) using JavaSpaces
for distributing one task, using respectively the complete data
set (ALL), the complete data set discarding extreme outliers
(ALL - EO) and finally the complete data set discarding mild
outliers (ALL - MO)

The graph for the overhead using JavaSpaces for dis-
tributing one task is shown in figure 1. The mean is marked
with a solid line at41.1575ms. The graph is divided in four
columns grouped by the number of workers. So, from left to
right we have first the data points based on1 worker, then2
workers, etc.

Figure 1: Graph representing the overhead using JavaSpaces
for distributing one task. TheX axis represents the data
points, theY axis the overhead (inms)

There are still a few problems with this visualization. As
mentioned earlier, the graph does not represent data mea-
sured with more than4 workers. Another, more important,
problem is the fact that some data points in the graph have
negative values, which influence the mean badly. The reason
for these negative values lies in equation (1). Indeed, all
tasks are supposed to have the same duration (the mean of
the tasklist, not the theoretical mean). In the calculations
with 3 or more workers, the following situation may occur:
suppose4 tasks must be distributed with each a length of

respectively3, 4, 3 and2. The mean of this tasklist is clearly
3. So, 4 tasks of length3 will be theoretically distributed,
resulting in a total computation time of6. However, in
practice, worker1 could compute the tasks with length3
and2, worker2 the task with length4 and worker3 the task
with length 3, resulting in a total computation time of5.
Thus, situations in which tasks are distributed in such a way
that they outperform the theory might occur, leading to a
negative overhead.

CONCLUSIONS

This contribution discussed briefly the design and im-
plementation of a framework created to minimise efforts
for building distributed applications using the farmer-worker
pattern with tasks and results. Furthermore, JavaSpaces
served as a testplatform for a first attempt at modelling the
overhead using statistical techniques. When more detailed
data sets will become available, more thoroughgoing analy-
sis tools will be used, such as analysis of variance (ANOVA),
to obtain better predictions of the overhead.

REFERENCES

[1] Gigaspaces. URL: http://www.j-spaces.com.

[2] Jini. URL: http://www.jini.org.

[3] Mpich. URL: http://www-unix.mcs.anl.gov/ mpi/
mpich/.

[4] Tspaces. URL: http://www.almaden.ibm.com/ cs/
TSpaces/.

[5] Yale linda group. URL: http://www.cs.yale.edu/ Linda/
linda.html.

[6] W. Keith Edwards. Core Jini. Prentice Hall, second
edition, 2001.

[7] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces
Principles, Patterns, and Practice. Addison Wesley,
1999.

[8] William Gropp, Lusk Ewing, and Anthony Skjellum.
Using MPI. The MIT Press, second edition, 1999.

[9] Frederic Hancke, Gunther Stuer, David Dewolfs, Jan
Broeckhove, Frans Arickx, and Tom Dhaene. Mod-
elling overhead in javaspaces. InProceedings Euro-
media, pages 77–81. Eurosis, 2003.

[10] David C. Hoaglin, Frederick Mosteller, and John W.
Tukey. Understanding Robust and Exploratory Data
Analysis. Wiley, 2000.

[11] Neil A. Weiss.Introductory Statistics. Addison Wesley,
sixth edition, 2002.

[12] P. Wyckoff. Tspaces. Technical report, IBM Almaden
Research Center, 1998.


