

ABSTRACT

This paper describes a new metacomputing characterisation
approach. The problem dependent benchmarking is
replaced by a dynamic problem independent
characterisation approach by introducing a new level of
abstraction. This allows for problem independent
metacomputing classification.

INTRODUCTION

While in recent times the computational power of modern
computing systems has grown spectacularly, the need for
increasing computing capacity has grown even faster. A
possible solution to this problem is the utilization of the idle
CPU-cycles of workstations around the world. Ideally, all
unused resources should be made available to whoever
needs them. This concept is known as resource scavenging.
DCS’s (Distributed Computational Systems) try to
approximate this ideal situation as closely as possible.

Although many DCS’s, (e.g. the Linda Tuple Space
implementations, Condor, …) were introduced during the
last decade(s), there is no actual information on the
performance characteristics of those systems. While, all of
them are more or less reliable, the key question: “Which one
performs best in this particular situation?” remains
unanswered. Running currently available benchmarks
results in static problem-dependent results which do not
necessarily correspond to the problem at hand. One only
gets exact performance results for the specific problems
contained in the benchmark. For all other cases, an error
prone interpolation has to be performed.

Ideally, this characterisation problem is solved by a
multidimensional performance lookup space constructor
which provides for low effort DCS performance lookup
table construction. By comparing the problem specific
performance data of the different lookuptables a problem
specific DCS classification is realised.

LOOKUPSPACE ENTITIES

In order to construct and eventually use a lookup space an
adequate entity description is required. As each entity, a
distributed solution of a specific problem, is in fact a
distribution of tasks on a certain infrastructure, the
description consists of some tasklist descriptors and some
infrastructure descriptors. In the current stage of this
research the tasklist is only described by the number of
tasks and the duration of each task. The infrastructure is
only described by the number of available workers. Future
research will include the expansion of the tasklist- and
infrastructure descriptors by introducing for example the
physical size of a task, the network infrastructure, the
computational power and a lot more.

LOOKUPSPACE CONSTRUCTION

Constructing a lookupspace is in fact mapping the
performance data on the corresponding distributed
problems. The infinite amount of distributed problems
makes an exact mapping impossible. To resolve this
problem we tried a new approach. In stead of mapping the
performance on each problem we analyzed the influence of
the different descriptor parameters on the performance of
the DCS.

If one could simulate each possible distributed problem by
supplying its parameter tuple, it is possible to do an
empirical detection of the impact of these, mutually
dependent, parameters on the overall performance of the
DCS. This can be represented as a multi-dimensional
lookup space which maps the distributed problems to their
corresponding performance on a given DCS. This mapping
can be performed in two ways, (1) by a brute force approach
in which all possible combinations are evaluated, and (2) by
a dynamic adaptive statistical approach such as DOE
(Montgomery 2001) in which only relevant tuples are
selected. As the second method is still ongoing research of
a companion project (Hancke et al. 2003) (De Neve 2003)
currently the brute force approach is still in use.

P. Hellinckx, F. Arickx, J. Broeckhove and T. Dhaene
Computational Modelling And Programming

Antwerp University
Middelheimlaan, 1 – 2020, Antwerp,

Belgium
E-mail: Pehe@ruca.ua.ac.be

Problem Independent Metacomputing classification

DISTRIBUTED PROBLEM SIMULATION

The fundamental properties of the needed simulation
technique are total problem range coverage, simulation
correctness and easy definability. This means that for every
existing distributable problem it should be possible to
generate a simulation which is indistinguishable of the
original problem and can be completely defined by a couple
of parameters. By directly manipulating the fundamental
building blocks of distribution problems, the tasks, the
properties mentioned above can be obtained. Figure 1
illustrates a typical distribution scheme.

Such a scheme consists of ‘x’ different tasks which can all
be computed independently of one another. There is no
relation between the tasks and/or the computers that
execute them.

Different distributive problems are distinguished by their
task lists. Fulfilling the property of having total problem
range coverage comes down to dealing with this difference
in task lists. An easy way to generate every possible task
list would solve this problem. This is done by replacing the
actual tasks by a time consuming dummy function. See
figure. 2.

This function occupies the processor for a given time. In
the current version of our testing technique the tasks are
replaced by a sleep function which sleeps the actual
running time of the original task (task1 will be replaced by a
sleep of time t1). Applying this technique, one can build
every task list one wants by generating the corresponding
list of sleeps.

Due to the number of tasks, each with specific properties, in

a task list it is impossible to define it manually. To resolve
this problem a test-generator is build. Given the appropriate
input, an XML-file (McLaughlin 2001) representing the
intended task list is constructed. See figure 3.

The use of an XML file has two main advantages:

1. It provides for platform independent storage medium

for task lists.
2. Identical experiments can be repeated using the same

task list.

Currently the task lists are build using two inputs:

1. The number of tasks.
2. The PDF (probability distribution function) of the task

duration.

Currently only two PDF’s are supported: fixed and
Gaussian. In future versions more will be added. Ultimately,
a completely user definable PDF will be supported.

CONCLUSION

In this paper a problem-independent meta-computing
characterization technique was introduced. It provides a
new approach to model a distributed computational
systems. The proposed technique enables one to obtain,
without performing any experiment, the performance of a
problem solution on a given DCS by simply specifying its
parameter tuple.

Figure 1: Typical distribution scheme: Each task ‘a’ takes
time ‘ta’ to compute on one machine. All ‘x’ tasks are
distributed on the ‘y’ available computers.

Figure 2: Introducing dummy tasks: each task ‘a’ is
replaced by a sleep of length ‘ta’

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>
<!DOCTYPE tasklist>
 <tasklist>
 <descriptor>
 <nrtasks>10</nrtasks>
 <duration>
 <NormalDistribution std="1.0" avg="10.0" />
 </duration>
 </descriptor>
 <tasks>
 <task id="1">
 <duration>9</duration>
 </task>
 <task id="2">
 <duration>10</duration>
 </task>

 ...

 <task id="10">
 <duration>9</duration>
 </task>
 </tasks>

</tasklist>

Figure 3: Example of an XML file of a taslist with 10

REFERENCES

Xml. URL: http://www.xml.com.

Chow R. and T. Johnson 1999. “Distributed Operating

Systems & Algorithms.” 1999. Addison-Wesley Pub Co
(March 1997)

Couvares, P. and T. Tannenbaum 2001,”Condor Tutorial”

First EuroGlobus Workshop June 2001

Gropp, W.; L. Ewing and Skjellum A. 1999. “Using MPI”.

The MIT Press, second edition, 1999.

Hancke, F.; G. Stuer; D. Dewolfs; J. Broeckhove; F. Arickx

and T. Dhaene 2003. “ Modelling Overhead in
JavaSpaces”. Proceedings Euromedia 2003, p77-81
Available at http://www.ruca.ua.ac.be/hancke/

McLaughlin, B..2001. “Java & XML”. O'Reilly &

Associates; 2 edition (September 2001)

Montgomery, D.C. 2001.“Design and Analysis of

Experiments”.the fifth edition. John Wiley and Sons Inc.,
New York, 2001.

Nester, C.; M.Philippsen and B. Haumacher . “A More Effi-

cient RMI for Java”. In Proc. of ACM 1999 Java Grande
Conference, pages 152–157, San Francisco, Calif., June
1999.

Neve, H.D. 2003. “Performantieanalyse van gedistribueerde

systemen m.b.v Design Of Experiment”s. 2003. Thesis UA
Academiejaar 2002 – 2003

