
Cluster Generation and Scheduling for Instruction (L0) Clusters
�

M. Jayapala, F. Barat, T. Vander Aa, G. Deconinck, F. Catthoor and H. Corporaal

{mjayapal,fbaratqu,tvandera,gdec}@esat.kuleuven.ac.be,

catthoor@imec.be, h.corporaal@tue.nl

ESAT/ELECTA, Kasteelpark Arenberg 10, K.U.Leuven,

Leuven-Heverlee, Belgium - 3001

30 August 2003

Abstract

Clustered L0 buffers are an interesting alternative to reduce en-
ergy consumption in the instruction memory hierarchy of em-
bedded VLIW processors. Currently, the synthesis of L0 clus-
ters is performed as an hardware optimization, where the com-
piler generates a schedule and based on the given schedule
L0 clusters are generated. Since, the result of the clustering
depends on the given schedule, it offers an interesting design
space to explore the effects of clustering by altering the sched-
ule to increase energy efficiency. This paper presents a study
indicating the potentials offered by scheduling for L0 clusters
in terms of L0 buffer energy reduction. The list scheduler is
extended to recognize the L0 clusters, and based on a few sim-
ple heuristics the operations are assigned to certain L0 clus-
ters, followed by an iterative methodology to reduce L0 buffer
energy consumption. The simulation results indicate that po-
tentially up to 10% of the L0 buffer energy can be reduced by
scheduling for L0 clusters with a simple heuristic.

1 Introduction

Current embedded systems for multimedia applications like
mobile and hand-held devices, are typically battery operated.
Therefore, low energy is one of the key design goals of such
systems. Many such systems often rely on VLIW ASIPs. How-
ever, power analysis of such processors indicate that a signif-
icant amount of power is consumed in the instruction caches.
L0 buffering is an effective scheme to reduce energy consump-
tion in the instruction memory hierarchy [1]. For multimedia
applications storing the loop intensive parts of the code in a
small L0 buffer instead of the big instruction cache, energy can
be reduced significantly. While this reduction is substantial,
further optimizations are still necessary to ensure such high en-
ergy efficiency in the future processors. With orthogonal opti-
mizations applied on different aspects of the processor like the
datapath, register files and data memory hierarchy, the over-
all processor energy reduces. However the instruction cache
energy, including the L0 buffer, is bound to increase. Of the
two main contributors of energy consumption in the instruction
memory hierarchy, the L0 buffers are the main bottleneck. To
alleviate the L0 buffer energy bottleneck, a clustered L0 buffer

�
This work is in part supported by MESA under MEDEA+ program

organization has been proposed in the recent past [2]. Essen-
tially, in a clustered L0 buffer organization, the L0 buffers are
partitioned and grouped with certain functional units in the dat-
apath to form an instruction cluster or an L0 cluster [2].

Motivation to Schedule for L0 Clusters Currently, the gen-
eration of L0 clusters is a hardware optimization. For a given
application and a corresponding schedule, the clustering tool
analyzes the functional unit activation trace and generates clus-
ters that optimizes energy [2]. The left-side in Figure 1, illus-
trates the flow for generating clusters. For a given application,
a pre-compiler tool analyzes the profile and identifies certain
interesting parts1 of the code to be mapped on to the L0 buffers.
In the example, a certain for-loop is mapped on to the L0 buffer.
The compiler then generates a certain schedule for the selected
parts of the code (for-loop in the example). Here, the schedule
is generated for an 8-issue VLIW processor, which has 3 in-
structions with 4 operations in first instruction and 1 operation
in second and third instructions. The clustering tool generates
L0 clusters that minimizes the L0 buffer energy, and which
is the optimum for this given schedule. No other clustering
will have a lower energy consumption for this schedule. In
the example, the above schedule generates 4 clusters with en-
ergy consumption of 1.0 units. The associated functional unit
grouping and the L0 buffer partition sizes are as indicated in
the Figure 1. For example, functional units (or issue slots) 3, 5
and 7 are grouped into a single cluster and it has an L0 buffer
partition of width 3 operations and a depth of one word.

However, the resulting clusters from the clustering tool are
sensitive to the schedule. For instance in the above example, if
the schedule is slightly modified as indicated in Figure 1, then
the same clustering tool would now produce different clusters:
3 clusters, with different functional unit grouping and L0 buffer
partitions. The L0 buffer energy is also reduced from 1.0 units
to 0.91 units. This is a good motivation to investigate the po-
tentials offered by scheduling to reduce L0 buffer energy.

2 Scheduling for L0 Clusters

In order evaluate the scheduling freedom and L0 cluster gen-
eration across instructions and extending up to basic blocks,

1Mainly loops, but a group of basic blocks within a loop can also be
mapped.

1

ADD SW ADD

CMP

ADD

BR

ADD ADD SW ADD

CMP

BR

ADD

CMP

FU2 FU5 FU8FU1 FU4

BRADD

FU7FU6FU3

SWADD ADD ADD SW ADD

FU1 FU3FU2 FU4 FU8FU7FU6FU5

CMP

BR

for (i=0; i<100; i++) {

}
 a[i] = i+3;

2 3 4 5 7 8 1 2 3 4 5 61 6 7 8

PRE−COMPILER (MAPPING LOOPS to L0 BUFFERS)

POST−COMPILER (GENERATING L0 CLUSTERS)

COMPILER (SCHEDULING)

4 Clusters 3 Clusters

L0 Buffer Partition
L0 Cluster

L0 Cluster is a Group of Functional Units
and the Associated L0 Buffer Partition

Energy: 1.0 Units Energy: 0.91 Units

Loop selected by
the pre−compiler
to be mapped on to
L0 Buffers

MODIFY

SCHEDULE

T
O

O
L

 F
L

O
W

Figure 1: Example Illustrating Scheduling Sensitivity on L0 Cluster Generation

the following iterative scheme as described in Figure 2 is em-
ployed. During the first iteration, the compiler generates a
certain schedule for an unclustered machine (no L0 clusters).
Based on the given schedule, a certain optimal L0 clustering is
generated. The functional units and the L0 buffers as described
in the machine description are regrouped according to the L0
clusters obtained in the first iteration. In the following itera-
tions, the compiler assigns the operations to L0 clusters based
on a certain heuristic, and thus alters the schedule. Now, for
the new schedule the instruction clusters are obtained, and the
most optimal clustering result is chosen for the next iteration.
This process is repeated for a certain preset number of itera-
tions.

Extended List Scheduler The core of algorithm of the list
scheduler that is relevant to the operation assignment is de-
scribed in the Algorithm 1. For a given basic block, the sched-
uler generates a list of operations based on certain priority.
Now, each operation in that list has to be assigned to a cer-
tain functional unit. In the extended list scheduler, instead
of choosing the first available functional unit, a list of possi-
ble L0 clusters is created (L0_cluster_list). This L0 cluster
list is now prioritized in descending order based on a simple
heuristic, as explained in the following section. A matching
slot (get_non_conflicting_slot) is now chosen among the prior-
itized L0 cluster list. Once a matching slot is found, the current
operation is bound to that functional unit and the rest of the
scheduling process (schedule_op) takes over.

Heuristics for Prioritizing L0 Cluster List
Given a certain operation the problem is to choose a certain

instruction cluster in such a way that the modified schedule
may lead to a more energy efficient clustering solution. One
of the following two heuristics can be employed to assign an
operation to a cluster in an intelligent way.

The first heuristic is to assign operations to a cluster so that,
if a cluster is used, all the following operations are tried to be
assigned to the same cluster. This heuristic comes from the
observation that, by continuing to use the same cluster, the re-

Algorithm 1 List Scheduler Extension for Assigning Opera-
tions to Instruction Clusters

Derive_Schedule (Basic Block){
ListOp = GenerateList(Basic Block);
foreach (Op in ListOp){

L0_cluster_list = build_L0_cluster_list(Op);
prioritize_L0_icluster_list(Op, Pre-

vOp, L0_icluster_list);
get_non_conflicting_slot(Op, L0_cluster_list);
schedule_op (Op);

}
}

maining clusters can be made inactive, thus saving energy. The
second heuristic is similar to the previous one. Except that, af-
ter the cluster list is prioritized, if an operation cannot be as-
signed to the highest priority cluster (due to some conflicts),
the schedule time of the current operation is increased until the
current operation is assigned to that cluster. In the previous
heuristic, if the operation cannot be assigned to the highest pri-
ority cluster, then the lower priority clusters are tried, but the
schedule time is not increased.

3 Experimental Results

This section outlines the simulation results of scheduling for
L0 clusters. Each benchmark is passed through the tool chain
as indicated in Figure 2. The first phase is the pre-compiler,
which maps the interesting parts of that application on to the
L0 buffers. The second phase is the compiler suite, which is an
extended version of the Trimaran framework. The list sched-
uler in the backend of this framework has been extended to
implement the operation assignment phase as described in the
previous section. The third phase is the post-compiler, wherein
the tool generates an optimal L0 clustering for a given sched-
ule. The number of iterations is preset to ten. The energy mod-
els of the L0 buffers are derived from Wattch for a 0.18um

2

Basic Blocks for L0 Clusters)

Application (Program)

L0 Clusters

Compiled Program

Pre−Compiler

Compiler
Extended List Scheduler for Description

Machine

(Mapping: Selecting Appropriate

Operation Assignment

Post−Compiler
Generating L0 Clusters

Figure 2: An Iterative Methodology for Operation Assignment
(Scheduling) and Clustering

1 2 3 4 5 6 7 8 9 10
0.9

0.95

1

1.05

1.1

1.15

1.2

Iteration #

L0
 B

uf
fe

r
E

ne
rg

y

 (a) Mpeg2 Decoder & VLIW C6X Type FUs

1 2 3 4 5 6 7 8 9 10
0.95

1

1.05

1.1

1.15

1.2

Iteration #

C
yc

le
s

Prev
Prev(stime)
PrevOnly
PrevOnly(stime)

1 2 3 4 5 6 7 8 9 10
0.9

1

1.1

1.2

1.3

Iteration #

L0
 B

uf
fe

r
E

ne
rg

y

 (b) Mpeg2 Decoder & Homogeneous FUs

1 2 3 4 5 6 7 8 9 10
0.95

1

1.05

1.1

1.15

1.2

Iteration #

C
yc

le
s Prev

Prev(stime)
PrevOnly
PrevOnly(stime)

Figure 3: L0 Buffer Energy and Performance Figures for
Mpeg2 Decoder

technology. The architecture under consideration is an unclus-
tered (datapath) VLIW processor with 8 functional units. Two
datapath variants have been considered: (a) a datapath with
functional units similar to the TI C6X (b) a datapath with ho-
mogeneous functional units.

Figure 3 shows the energy and performance results for the
two datapath variants for the Mpeg2 Decoder benchmark. For
all the heuristics, the energy and performance figures in the
first iteration corresponds to the clustering result as applied to
a default schedule (without considering the L0 clusters).

The curves corresponding to legend ’Prev’ represents the en-
ergy and performance figures for the heuristic: assigning a high
priority to an L0 cluster to which the previous operation was
assigned to. The figures show that, up to 10% of L0 buffer en-
ergy can be reduced in both the datapath variants without any
loss of performance. Soon after the first iteration, the energy
consumption fairly stabilizes in the remaining iterations. Af-
ter the first iteration, the scheduler generates a schedule for the
L0 clusters, as obtained from the first iteration. This schedule
achieves the 10% energy reduction. Since the schedule times
are not modified, the performance figures do not change either
(refer Figure 3).

The curves corresponding to legend ’PrevOnly’ represents
the energy and performance figures for the heuristic: assign-
ing an operation to the L0 cluster to which the previous opera-

tion was assigned to, even if schedule time needs to be modi-
fied. The figures show that over the subsequent iterations, both
energy and performance deteriorates. Also, the deterioration
is worse for the homogeneous variant (Figure 3(b)), than the
VLIW C6X variant (Figure 3(a)). Since the chances of a sub-
sequent operation to be capable of being executed in the previ-
ous operation’s cluster is very high in a homogeneous variant,
the energy and performance figures are worse than the figures
for the C6X variant.

For each of the above two heuristics, another variant was
experimented. Instead of applying the prioritizing-heuristic for
all the operations, they were applied only to operations, if those
operations were to be scheduled in the same cycle. The corre-
sponding energy and performance figures are represented by
legends ’Prev(stime)’ and ’PrevOnly(stime)’. The aim was to
see if a smaller perturbation in the schedule (for the ’Prev’
heuristic, the schedule changes significantly after the first it-
eration) lead to a better solution. However, the smaller pertur-
bation led to a smaller energy reduction, about 5% (Figure3(a)
and (b)), and no further reduction was achieved during the sub-
sequent iterations.

4 Future Work

In summary, this paper presents a study indicating the poten-
tials offered by scheduling for L0 clusters in terms of energy
reduction. The list scheduler is extended to recognize the L0
clusters, and based on a few simple heuristics the operations
are assigned to certain L0 clusters, followed by an iterative
methodology to reduce L0 buffer energy consumption. The
simulation results indicate that potentially up to 10% of the
L0 buffer energy can be reduced by scheduling for L0 clusters
with a simple heuristic.

The future work would involve investigating multi-pass
heuristics, where a certain cost function is evaluated when a
few operations are assigned and depending on the cost value
the operations may be reassigned. Current scheduler for VLIW
processors employ modulo scheduling in one form or the other.
Extending the modulo scheduler for L0 clusters would be an-
other direction for further study. Datapath clusters and L0 clus-
ters can coexist. However, current schemes for generating dat-
apath clusters and L0 clusters are mutually exclusive, and the
resulting clusters might be in conflict. The synchronicity be-
tween datapath and L0 clusters needs to be investigated.

References
[1] R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K. Nitta,

A. Shridhar, K. Seki, and K. Sasaki, “Instruction buffering to
reduce power in processors for signal processing,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 5,
pp. 417–424, December 1997.

[2] M. Jayapala, F. Barat, T. VanderAa, F. Catthoor, G. Deconinck,
and H. Corporaal, “Clustered l0 buffer organization for low en-
ergy embedded processors,” in Proc of 1st Workshop on Ap-
plication Specific Processors (WASP), held in conjunction with
MICRO-35, November 2002.

3

