
Instrumenting JVM’s at the machine code level
Jonas Maebe Michiel Ronsse

Department of Electronics and Information Systems
Ghent University, Belgium

{jmaebe|ronsse|kdb}@elis.ugent.be

http://www.elis.ugent.be/diota/

Koen De Bosschere

Abstract— Adding small code snippets at key points to existing
code fragments is called instrumentation. It is an established
technique to debug certain otherwise hard to solve faults, such
as memory management issues and data races. Dynamic instru-
mentation can already be used to analyse code which is loaded
or even generated at run time. With the advent of environments
such as the Java Virtual Machine with optimizing Just-In-Time
compilers, a new obstacle arises: self-modifying code. In order to
instrument this kind of code correctly, one must be able to detect
modifications and adapt the instrumentation code accordingly.
In this paper we propose an innovative technique that uses the
hardware page protection mechanism of modern processors to
detect such modifications. We also show how an instrumentor
can adapt the instrumented version depending on the kind of
modificiations as well as an experimental evaluation of said
techniques.

I. I NTRODUCTION

Instrumentation is a technique whereby existing code is
modified in order to observe or modify its behaviour. It has
a lot of different applications, such as profiling, coverage
analysis and cache simulations. One of its most interesting
features is however the ability to perform automatic debug-
ging, or at least assist in debugging complex programs. After
all, instrumentation code can intervene in the execution at any
point and examine the current state, record it, compare it to
previously recorded information and even modify it.

The instrumentation can occcur at different stages of the
compilation or execution process. When performed prior to the
execution, the instrumentation results in changes in the object
code on disk, which makes them a property of a program or
library. This is called static instrumentation. If the addition of
instrumentation code is postponed until the program is loaded
in memory, it becomes a property of an execution. In this case,
we call it dynamic instrumentation.

When using dynamic instrumentation, the original code is
read from memory and can be instrumented just before it is
executed, so even dynamically loaded and generated code pose
no problems. However, when the program starts modifying this
code, the detection and handling of these modifications is not
possible using current instrumentation techniques. Yet, being
able to instrument self-modifying code becomes increasingly
interesting as run time systems that exhibit such behaviour,
such as Java Virtual Machines, gain more and more popularity.

Even when starting from a system that can already instru-
ment code on the fly, supporting self-modifying code is a quite
complex undertaking. First of all, the original program code
must not be changed by the instrumentor, since otherwise the
program’s own modifications may conflict with these changes
later on. Secondly, the instrumentor must be able to detect
changes performed by the program before the modified code
is executed, so that it can reinstrument this code in a timely
manner. Finally, the reinstrumentation itself must take into
account that an instruction may be changed using multiple
write operations, so it could be invalid at certain points in
time.

In this paper we propose a novel technique that can be
used to dynamically instrument self-modifying code with an
acceptable overhead. We do this by using the hardware page
protection facilities of the processor to mark pages that contain
code which has been instrumented as read-only. When the
program later on attempts to modify instrumented code, we
catch the resulting protection faults which enables us to detect
those changes and act accordingly. The described method has
been experimentally evaluated using theDIOTA (Dynamic
Instrumentation, Optimization and Transformation of Appli-
cations [MRDB02]) framework on the Linux/x86 platform
by instrumenting a number of JavaGrande [Gro] benchmarks
running in the Sun 1.4.0 Java Virtual Machine.

The paper now proceeds with how the detection of modified
code is performed and how to reinstrument this code. We then
present some experimental results of our implementation of
the described techniques and wrap up with the conclusions
and our future plans.

II. DYNAMIC INSTRUMENTATION

Dynamic instrumentation can be be done in two ways.
One way is modifying the existing code, e.g. by replacing
instructions with jumps to routines which contain both instru-
mentation code and the replaced instruction [MCC+95]. This
technique is not very usable on systems with variable-length
instructions however, as the jump may require more space than
the single instruction one wants to replace. If the program later
on transfers control to the second instruction that has been
replaced, it will end up in the middle of this jump instruction.
The technique also wreaks havoc in cases of data-in-code or

code-in-data, as modifying the code will cause modifications
to the data as well.

The other approach is copying the original code into a sep-
arate memory block (this is often calledcloning) and adding
instrumentation code to this copy [BDA01], [SKV+03],
[MRDB02]. This requires special handling of control-flow in-
structions with absolute target addresses, since these addresses
must be relocated to the instrumented version of the code. On
the positive side, data accesses still occur correctly without
any special handling, even in data-in-code situations.

The reason is that when the code is executed in the clone,
only the program counter (PC) has a different value in an
instrumented execution compared to a normal one. This means
that when a program uses non-PC-relative addressing modes
for data access, these addresses still refer to the original,
unmodified copy of the program or data. PC-relative data
accesses can be handled at instrumentation time, as the in-
strumentor always knows the address of the instruction it is
currently instrumenting. This way, it can replace PC-relative
memory accesses with absolute memory accesses based on
the value the PC would have at that time in a uninstrumented
execution.

III. D ETECTING MODIFICATIONS

There are two possible approaches for dealing with code
changes. One is to detect the changes as they are made, the
other is to check whether code has been modified every time it
is executed. Given the fact that in general code is modified far
less than it is executed, the first approach was chosen. Once a
page contains code that has been instrumented, it will be write-
protected using the hardware page protection facilities of the
processor. The consequence is that any attempt to modify such
code will result in a segmentation fault. An exception handler
installed byDIOTA will intercept these signals and take the
appropriate action.

Since segmentation faults must always be caught when
using our technique to support self-modifying code,DIOTA
installs a dummy handler at startup time and whenever a
program installs the default system handler for this signal
(which simply terminates the process if such a signal is raised),
or when it tries to ignore it. The resulting way of handling
exception inDIOTA is shown in Figure 1.

Whenever a protection fault occurs due to the program
trying to modify some previously instrumented code, we make
a copy of the accessed page, then mark it writable again and let
the program resume its execution. This way, it can perform the
changes it wanted to do itself. After a while, the instrumentor
can compare the contents of the unprotected page and the the
buffered copy to find the changes.

The question then becomes: when is this page checked
for changes, how long will it be kept unprotected and how
many pages will be kept unprotected at the same time.
All parameters are important for performance, since keeping
pages unprotected and checking them for changes requires

Signal triggered

SIGSEGV due to
instrumentation?

Execute
instrumented
signal handler

• Flush changes to currently
unprotected page
• Buffer and unprotect new
page

Re-execute instruction that
caused SIGSEGV

No Yes

Fig. 1. Exception handling in the context of self-modifying code support

both processing and memory resources. The when-factor is
also important for correctness, as the modifications must be
incorporated in the clone code before it is executed again.

On architectures with a weakly consistent memory model
(such as the SPARC and PowerPC), the program must make its
code changes permanent by using an instruction that synchro-
nizes the instruction caches of all processors with the current
memory contents. These instructions can be intercepted by the
instrumentation engine and trigger a comparison of the current
contents of a page with the previously buffered contents. On
other architectures, heuristics have to be used depending on
the target application that one wants to instrument to get
acceptable performance and correct behaviour.

IV. H ANDLING MODIFICATIONS

The optimal way to handle the modifications, is to rein-
strument the code in-place. This means that the previously
instrumented version of the instructions in the clone are simply
replaced by the new ones. This only works if the new code has
the same length as (or is shorter than) the old code however,
which is not always the case.

A second way to handle modifications can be applied when
the instrumented version of the previous instruction at that
location was larger than the size of an immediate jump. In
this case, it is possible to overwrite the previous instrumented
version with a jump to the new version. At the end of this
new code, another jump can transfer control back to rest of
the original instrumentation code.

Finally, if there is not enough room for an immediate jump,
the last resort is filling the room originally occupied by the
instrumented code with breakpoints. The instrumented version

Program Normal Instrumented Slowdown Relative # of Relative #
name execution (s) execution (s) protection faults of lookups
FFT 40.28 95.86 2.38 2305 409609
SparseMatmult 24.29 91.09 3.75 3751 874669
HeapSort 5.25 41.03 7.82 14779 1700553
Crypt 8.91 175.15 19.66 12845 6696704
RayTraceBench 28.87 652.11 22.59 6611 8026878

TABLE I

TEST RESULTS FOR A NUMBER OF SEQUENTIALJAVA GRANDE 2.0 BENCHMARKS

of the new code will simply be placed somewhere else in the
code. Whenever the program then arrives at such a breakpoint,
DIOTA’s exception handler is entered. This exception handler
has access to the address where the breakpoint exception
occurred, so it can use the translation table at the end of the
block to look up the corresponding original program address.
Next, it can lookup where the latest instrumented version of
the code at that address is located and transfer control there.

V. EXPERIMENTAL EVALUATION

Table I shows the measured timings when running a number
of tests from sections 2 and 3 of the sequential part of the
JavaGrande benchmark v2.0 [Gro], all using the SizeA input
set. The first column shows the name of the test program.
The second and third columns show the used cpu time (as
measured by thetime command line program, expressed in
seconds) of an uninstrumented resp. instrumented execution,
while the fourth column shows the resulting slowdown factor.

The fifth column contains the the amount of protection
faults divided by the uninstrumented execution time, so it is
an indication of the degree in which the program writes to
pages that contain already executed code. The last column
shows the number of lookups per second of uninstrumented
execution time, where a lookup equals a trip toDIOTA to
get the address of the instrumented code corresponding to the
queried target address. The results have been sorted on the
slowdown factor.

Regression analysis shows us that the overhead due to the
lookups is nine times higher than that caused by the protection
faults (and page compares, which are directly correlated with
the number of protection faults, since every page is compared
N times after is unprotected due to a fault). This means that
the page protection technique has a quite low overhead and
that most of the overhead can be attributed to the overhead of
keeping the program under control.

The cause for the high cost of the lookups comes from the
fact that the lookup table must be locked before it can be
consulted, since it is shared among all threads. We have to
disable all signals before acquiring a lock since otherwise a
deadlock might occur (in case the thread that holds the lock
receives a signal from another thread). Disabling and restoring
signals is an extremely expensive operation under Linux, as
both operations require a system call.

VI. CONCLUSIONS AND FUTURE PLANS

We have described a method which can be used to suc-
cessfully instrument an important class of programs that use
self-modifying code, specifically Java programs run in an
environment that uses a JiT-compiler. The technique uses the
hardware page protection mechanism present in the processor
to detect modifications made to already instrumented code.
Additionally, a number of optimisations have already been
implemented to reduce the overhead, both by limiting the
number of protection faults that occurs and the number of
comparisons that must to be performed.

In the near future, a number of extra optimisations will be
implemented, such as keeping more than one page unprotected
at a time and the possibility to specify code regions that will
not be modified, thus avoiding page protection faults caused by
data and code being located on the same page. Additionally,
we are also adapting theDIOTA framework in such a way
that every thread gets its own clone and lookup table. This
will greatly reduce the need for locking and disabling/restoring
signals, which should also result in a significant speedup for
the programs that perform a large number of lookups.

REFERENCES

[BDA01] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe.
Design and implementation of a dynamic optimization frame-
work for windows. Inproceedings of the 4th ACM Workshop
on Feedback-Directed and Dynamic Optimization (FDDO-4),
Austin, Texas, December 2001.

[Gro] The JavaGrande Benchmark Group. URL=
http://www.epcc.ed.ac.uk/javagrande/ .

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille,
Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic,
Krishna Kunchithapadam, and Tia Newhall. The Paradyn Parallel
Performance Tools.IEEE Computer, 28(11):37–44, November
1995. Special issue on performance evaluation tools for parallel
and distributed computer systems.

[MRDB02] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. DIOTA:
Dynamic Instrumentation, Optimization and Transformation of
Applications. InCompendium of Workshops and Tutorials, Held
in conjunction with PACT’02: International Conference on Par-
allel Architectures and Compilation Techniques, Charlottesville,
Virginia, USA, September 2002.

[SKV+03] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson,
and M. L. Soffa. Retargetable and reconfigurable software dy-
namic translation. InProceedings of the International Symposium
on Code Generation and Optimization 2003, San Francisco,
California, March 2003.

