
Background Data Format Optimization for Efficient Sub-Word Parallel
Program Generation

P. Op de Beeck†‡, M. Miranda†, F. Catthoor†‡and G. Deconinck‡
†IMEC, Leuven, Belgium

‡ESAT Lab. Katholieke Universiteit Leuven, Leuven, Belgium

Abstract

This paper illustrates the strong interaction between
background data format organization and foreground data
in the context of speed and power efficient Sub-Word level
Parallel (SWP) program generation. Such interaction, if not
considered well, results in an (un)packing and reordering
overhead that is typically required to match the format of
data stored in memory and the one required by the sub-
word parallel processing units. We propose a conceptual
methodology to minimize this overhead. The approach is
demonstrated on two real-life application kernels. A signif-
icant reduction in packing instruction overhead, data- (up
to a factor 12) and instruction memory accesses (up to a
factor 6) is obtained.

1 Introduction

Besides deciding which operations are selected for par-
allel execution on instruction set processors with support
for Sub-Word level Parallel (SWP) processing ([2, 1]), a
compiler needs to minimize the (un)packing and reordering
operation overhead. These operations are required because
firstly the in- and output data to the sub-word operations
have to be consumed and produced as full-length words and
secondly because the data sub-words in these full-words
might need to be reordered.

It is clear that these (un)packing operations strengthen
the interaction between the data path and the data organi-
zation in background memory and to the best of our knowl-
edge no research has been focused on systematically match-
ing such coupling.

In this paper we show how to systematically analyze this
interaction so we can (largely) eliminate the overhead in
(un)packing and reordering operations by adapting the data
layout in background memory to the data format required
by the sub-word level units and stored in the register file.
As a result, both packing instruction overhead and data and

0partially supported by FWO-project G.0160.02 ACTMA

for(i = 0; i < N; i++) {
A[2*i] = f(B[i],B[i+32]);
A[2*i+1] = g(B[i],B[i+32]);

5 A[2*i+32] = f(B[i+16],B[i+48]);
A[2*i+33] = g(B[i+16],B[i+48]);

}

Figure 1. A parallelizable loop

instruction memory accesses are significantly reduced.
Results for the execution time and data memory en-

ergy for an optimized application running on a TriMedia
TM1300 evaluation board shows at least a factor two gain
in execution time and a factor 4 in data memory accesses.

2 Existing compiler techniques for SWP

A closer look at existing compiler-level techniques for
SWP processing reveals that on their own they are impor-
tant steps, but they fail to efficiently map certain real-life
computation kernels when background memory issues are
incorporated.

Figure 1 shows a piece of code extracted from a Viterbi
butterfly (a processing kernel commonly used in wire-
less applications) to illustrate this. The technique de-
scribed in [3] would require the i-loop in Figure 1 to
be unrolled (twice in the case of a superword size of
4). The pairs (A[2i],A[2i+1]) and (A[2i+2],A[2i+3])
would then seed the initial pack list and the packing on
B would follow through the wish list (see [3] for ter-
minology). However, in some cases, after looking at a
more global picture, it is beneficial to pack the subwords
A[2i],A[2i+1],A[2i+32],A[2i+33] into one superword and
this is not considered.

The SIMD code selection of [4] will require even more
unrolling in Figure 1 because the adjacency constraint has
to be fulfilled for all arrays participating in potential SIMD
operations. Hence, also in this technique non-adjacent op-
tions are not considered and globally optimal solutions may
be overlooked.

1

The approach in [6] is based on a space-time mapping of
uniform recurrence equations. Equation 1 is an example of
a non-uniform equation because a reduction operator (i.e.
max) is present and thus it needs to be localized.

δbit(j) = max
1≤i≤N

δbit−1(i) (1)

However, further analysis reveals that the non-
uniformity is only present going from one bit-plane to the
next. Inside one bit-plane everything is nicely uniform
and enough subword parallelism can be exploited (if N ≥

#subwords). Therefor an early decision is taken to partition
the bit-dimension globally sequential. However, we believe
that in the optimal case the space-time mapping and parti-
tioning decisions may be different over different bit-planes.
Again the local scope in which the analysis is taking place
leads to suboptimal solutions.

In contrast, the goal of this paper is to show the pres-
ence of this coupling effect between background memory
data layout and SIMD issues, and to propose a conceptual
methodology that considers these issues and solves them
using program transformations before the detailed compila-
tion steps take place. It is our intention to re-use the exist-
ing parallelization techniques (e.g. the space-time mapping
parallelization [6] and code selection [4]) as back-end com-
pilation steps. We focus mainly on studying the data format
compatibility issues along the global dependency chains of
the data involved in SIMD operations.

3 Conceptual method

We use an updating algorithm (Figure 2) to illustrate
the interaction between the SIMD compilation steps and
the background data format Organisation and describe
a conceptual methodology to minimize the overhead in
(un)packing and reordering operations.

The update in this case translates into an explicit copy
(Figure 2(a), line 12) which results in a feedback loop from
array Fout to Fin. We will show that this feedback loop
causes a data format mismatch between Fout in the current
and Fin in the next iteration.

To analyze this mismatch we follow a number a steps:

Collecting data formats For each expression we can, in
general, derive different parallel versions resulting in
a number of different data formats for each array in-
volved in the expression.

Finding data parallelism in the first loop nest for the
expression on line 3 is straight forward. Due to the
loop-carried dependency along the i-loop, we choose
to parallelize across the j-loop. This results in Fig-
ure 2(b) line 20 . In the next loop kernel (line 5) 2
expressions are present. The first expression (line 8)
can be parallelized along the i- or the j-loop. For in-
stance for A this results in 2 different data formats, A[j

for(i = 0; i < N; i++)
for(j = 0; j < N; j++)

A[i][j] = f(A[i-1][j]);
{. . .}

5 while(th > TH) {
for(i = 0; i < N; i++)

for(j = 0; j < N; j++) {
Fout[i][j] = h(A[j][i]);
B[i][j] = g(Fin[i-1][j], Fin[i+1][j]);

10 }
{. . .}
memcpy(Fout, Fin, sizeof(Fout));

}

15 (a) Original code

for(i = 0; i < N; i++)
for(j = 0; j < N; j += 4)

20 A[i][j : j+3] = f(A[i-1][j : j+3]);
{. . .}
while(th > TH) {

for(i = 0; i < N; i += 4)
for(j = 0; j < N; j++) {

25 Fout[i : i+3][j] = h(A[j][i : i+3]);
}

for(i = 0; i < N; i++)
for(j = 0; j < N; j += 4) {

B[i][j : j+3] = g(Fin[i-1][j : j+3],
30 Fin[i+1][j : j+3]);

}
{. . .}

/* reorder Fout and copy to Fin */
35 for(i = 0; i < N; i += 4)

for(j = 0; j < N; j += 4) {
t0 = MLB(Fout[i : i+3][j], Fout[i : i+3][j+1]);
t1 = MLB(Fout[i : i+3][j+2], Fout[i : i+3][j+3]);
t2 = MUB(Fout[i : i+3][j], Fout[i : i+3][j+1]);

40 t3 = MUB(Fout[i : i+3][j+2], Fout[i : i+3][j+3]);

Fin[i][j : j+3] = MLW(t0, t1);
Fin[i+1][j+4 : j+7] = MUW(t0, t1);
Fin[i+2][j+8 : j+11] = MLW(t2, t3);

45 Fin[i+3][j+12 : j+15] = MUW(t2, t3);
}

(b) After SIMD parallelism on (a)

50
for(i = 0; i < N; i += 4)i

for(j = 0; j < N; j += 4) {
A0 = f(A[i-1][j : j+3]);
A1 = f(A0);

55 A2 = f(A1);
A3 = f(A2);

/* reorder A and store in AA*/
. . .

60 }
{. . .}
while(th > TH) {

for(i = 0; i < N; i++)
for(j = 0; j < N; j += 4) {

65 Fout[i][j : j+3] = h(AA[j : j+3][i]);
Fin[i][j : j+3] = g(Fin[i-1][j : j+3],

Fin[i+1][j : j+3]);
}

{. . .}
70 memcpy(Fout, Fin, sizeof(Fout));

}

(c) After SIMD parallelism on (a) with a reordering of A

Figure 2. Example of an updating algorithm

2

: j+3][i] and A[j][i : i+3]. For the moment we keep
both options.

For the second statement (line 9) we store the data for-
mat which results from parallelizing the j-loop.

Group related expressions The next step we collect all
expressions which have to take data format constraints
from each other, but we must keep control dependence
information. This is important because different con-
trol paths can benefit from different data formats.

In our example all expressions are kept together in one
control dependence graph. Expression 1 and 2 (Fig-
ure 2(a), line 3 and 8 respectively) are linked because
they both use the A array. Expression 2 and 3 (Fig-
ure 2(a), line 9) are linked together as well due to the
loop carried dependency between Fout and Fin.

Search for a valid data format strategy Starting from
the root, for each expression in the control depen-
dence subgraph we select a data format for each
array involved and propagate these decisions to the
directly reachable expressions. We continue to select
compatible data formats. If at some point this fails
we backtrack our previous decisions. In fact we
try to reorder the computation such that we find a
compatible data format. If this fails we insert data
reordering instructions.

If we carry this out in our example we select the only
data format for expression 1, namely A[i][j : j+3]. Ex-
pression two is the next reachable and it is annotated
with two possible data formats. We select A[j][i : i+3]
because it is compatible with our previous decision.
This choice also fixes the data format for Fout. The
third expression has a data format mismatch between
Fout and Fin which cannot be remedied by backtrack-
ing previous decisions without introducing data format
reordering expressions.

The compiler still has the freedom to choose where to
apply the reformatting. Since there is superword level
data reuse opportunity [5] which can be exploited in
the first loop kernel this is also a good place to reorder
the A array because the required data for reordering is
already present in the register file (Figure 2(c)).

Apply code transformations Finally we perform the loop
transformations (i.e. loop unrolling, unroll-and-jam
and loop-splitting) resulting from the analysis in the
previous step. Also emit the necessary data reordering
operations.

4 Results

In this section we provide results before and after (hand)
applying our conceptual methodology to two real life ker-

nels within the DAB, namely the OFDM block and the
Viterbi convolutional decoder. All versions have been exe-
cuted on the TM1300@166MHz using the native TriMedia
compiler.

Exec. # D accesses # I accesses
Implementation time(sec) (106) (106)
Ref-OFDM 0.94 36.4 32.4
+SIMD 0.11 2.9 7.5
Ref-Viterbi 1.74 121.5 154.4
+SIMD 0.40 16.8 23.7
Ref-DAB 2.98 176.9 230.0
+SIMD 0.77 31.9 71.4

Table 1. Impact of optimized SWP OFDM,
Viterbi and DAB

In Table 1 we show the results for the OFDM, Viterbi
and full DAB respectively. They show a decrease up to a
factor 8 in system cycles and a factor 12 in data memory
accesses. Furthermore there is up to a factor 6 reduction
in instruction fetches.Finally, due to SWP the full DAB is
running in real-time on the Trimedia board.

5 Conclusion

In this paper we show how to explore the organization of
the data in background memory to decrease the (un)packing
and reordering overhead when generating SWP code for
SIMD enhanced instruction set architectures. If this source
code transformation is omitted the sub-word level accelera-
tion capabilities provided by the architecture will be sub-
optimally exploited and the compiler will produce code
with a considerable overhead in (un)packing and reorder-
ing instructions. This interaction is illustrated using several
real-life demonstrators with substantial savings in both en-
ergy and execution time.

References

[1] http://focus.ti.com/docs/prod/folders/print/tms320c64x.html

[2] http://www.trimedia.com/products/briefs/cores.html

[3] S.Larsen, S.Amarasinghe, “Exploiting superword level parallelism
with multimedia instruction sets“, In Conf. Programming Language
Design and Implementation, Vancouver, BC Canada, pp.145-156,
June 2000.

[4] R.Leupers and S.Bashford, “Graph based Code Selection Tech-
niques for Embedded Processors”, in ACM Design Automation of
Electronic Systems, vol. 5, no. 4, pp. 794-814, October 2000.

[5] J.Shin, J.Chame, M.W.Hall, “Compiler-controlled caching in super-
word register files for multimedia extension architectures“, In proc.
of PACT , Charlottesville, USA, pp.45-53, September 2002.

[6] R.Schaffer , R. Merker, F.Catthoor, ”Systematic Design of Pro-
grams with Sub-Word Level Parallelism”, In Proc. PARELEC, War-
saw, September 2002.

3

