
Adaptive Prefetching for Multimedia Applications in Embedded Systems

Hassan Sbeyti*, Smail Niar*, Lieven Eeckhout**
*LAMIH, University of Valenciennes France

**ELIS, University of Ghent, Belgium

Abstract
 Video sequence compression/decompression algorithms
like MPEG4 are used in many applications because of
their efficiency in supporting different compression bit
rates (5Kbits/s-5Mbits/s), their enhanced error
resilience/robustness, their content based interactivity and
scalability which make them applicable in mobile systems.
On the other hand these algorithms require a high
computational processing power and memory bandwidth.
The high memory bandwidth requirements do not only
affect the real time behavior of such applications but also
its power consumption. In this paper, we analyze and show
how to exploit the memory behavior of MPEG4
applications. To improve the memory access performance,
we present a new and simple prefetching mechanism,
which adapts the memory access mechanism to the
memory access patterns of the different application parts.
By doing so, we are able to increase performance, to better
utilize the available resources and to reduce power
consumption. Using our prefetch method, we are able to
get up to 6% IPC improvement, more than 50 % cache
miss reduction, and up to 4.7 % power reduction. Our
mechanism results in better performance for a 2KB data
cache than is achievable with 8KB data cache (without
prefetching) for StrongArm SA1110 and Xscale-like
processor configurations. This mechanism requires limited
hardware resources and generates little additional
overheads (external bus transfers). This makes this
adaptive prefetching well suited for embedded processor
micro-architectures.

1 Memory Access Behaviors by MPEG4
In order to study the memory access behavior (concerning
the data cache only) of the MPEG4 application running in
an embedded system, we modified the sim-wattch
SimpleScalar simulator [7] to profile the MPEG4
application at run time. Intel StrongArm1110 and Xscale
micro-architecture models were used. The following video
sequences are used: foreman, news, and container with
two different frames size CIF (352X288) and QCIF
(176X144). For each configuration, four VOPs are
decoded as I-VOP, P-VOP, P-VOP and P-VOP.
We first compute the �Inter-miss stride� which is defined
as the distance in the memory addresses between two
consecutive cache misses. If a memory access to address X
causes a cache miss and if the next cache miss is caused by
an access to memory address Y, then the inter-miss stride
is computed as S = Y�X.

Figure 1. The top 8 �Inter-miss strides� for the container
qcif video sequence with an 8KB data cache.

Figure 1 summarizes the top 8 inter-miss strides that were
observed for the container qcif video sequence for a
SA1110 configuration with an 8KB data cache. We also
computed the �inter-miss interval� which corresponds to
the number of clock (cycles) between two consecutive
cache misses. If a cache miss occurs at Tx and if the next
cache miss occurs at Ty, the inter-miss interval is I = Ty �
Tx. In hardware, this can be calculated using a hardware
counter: it is incremented each clock cycle and reset to
zero on a cache misses.

Figure 2: The top 10 �Inter-miss intervals� for the
container qcif video sequence with an 8KB data cache.

Figure 2 summarizes the top 10 inter-miss intervals for the
container qcif video sequence for a SA1110 configuration
with an 8KB data cache
Based on the �inter-miss stride� and the �inter-miss
interval� we now define two new concepts, namely the

39%

1%

1%
2%

27%

27%

2%
1%

S=16
S=832
S=90112
S=131088
S=1878353200
S=-1878353184
S=-131072
S=-816

13%

28%

13%2%
9%

24%

4%3% 3%1%
I= 8
I =15
I =17
I= 20
I= 69
I =71
I=72
I =91
I=174
I =2689

�constant miss pattern� and the �alternate miss
pattern�. We first define the constant miss pattern.
Consider a sequence of inter-miss strides X1,X2,�,Xn and
a corresponding sequence of inter-miss intervals
T1,T2,�,Tn. A constant miss pattern of length n is then
defined as (<X0,T0>,<X1,T1>,�,<Xn,Tn>) with
X1=X2=�=Xn and T1=T2=�=Tn.

2600

2700

2800

2900

3000

3100

3200

<1
6,
72

>

<1
6,
27

4>

<1
6,
72

>

<1
6,
72

>

<1
6,
72

>

<1
6,
27

4>

<1
6,
72

>

<1
6,
72

>

<1
6,
72

>

<1
6,
72

>

<1
6,
72

>

<1
6,
72

>

<1
6,
72

>

<Inter-miss stride, Inter-miss interval>

p
a
tt

e
rn

 l
e
n

g
th

Figure 3: The top 13 �constant miss patterns� for the
container qcif video sequence with an 8KB data cache.

Figure 3 summarizes the top 13 constant miss patterns as
observed for the container qcif video sequence for a
SA1110 configuration with an 8KB data cache. From
figure 4 we observe that the constant miss pattern (<16,
72>,<16,72>) has a pattern length of about 3150.
We now define the alternate miss pattern. Consider a
sequence of inter-miss strides X1,Y1,X2,Y2,�,Xn,Yn and a
corresponding sequence of inter-miss intervals Tx1,Ty1,
Tx2,Ty2,�,Txn, Tyn. An alternate miss pattern of length n
is then defined as
(<X0,Tx0>,<Y0,Ty0>,<X1,Tx1>,<Y1,Ty1>,�,<Xn,Txn>,<Yn,
Tyn>) with X1=X2=�=Xn, Tx1=Tx2=�=Txn, Y1=Y2=�=Yn
and Ty1=Ty2=�=Tyn .

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

<0
xff

fe0
01

0,1
92

>,
<0

x2
00

00
,2>

<0
x2

00
10

,91
>,
<0

xff
fe0

00
0,6

9>

<0
xff

f8c
01

0,9
1>

,<0
x7

40
00

,69
>

<0
x1

0,1
7>

,<0
x1

0,8
>

<0
x1

3c
01

0,1
92

>,<
0x

ffe
c4

00
0,2

>

<0
x2

00
10

,91
>,
<0

xff
fe0

00
0,6

9>

<0
x2

00
10

,91
>,
<0

xff
fe0

00
0,6

9>

<0
xff

fdb
01

0,9
1>

,<
0x

25
00

00
,69

>

<0
x1

0,1
7>

,<0
x1

0,8
>

<0
x1

0,1
7>

,<0
x1

0,8
>

<Inter-miss strideX, Inter-miss interval Tx>,<Inter-miss strideY, Inter-
miss interval Ty>

P
at

te
rn

 le
n

g
th

Figure 4: The top 10 �alternate miss patterns� for the
container qcif video sequence with an 8KB data cache.

Figure 4 summarizes the top 10 alternate miss patterns as
observed for the container qcif video sequence for a
SA1110 configuration with an 8KB data cache. From
figure 5 we can see for example that the alternate miss
pattern (<0x10,17>,<0x10,8>,<0x10,17>,<0x10,8>) has a
pattern length of about 16500. The constant miss patterns
and the alternate miss patterns represent about 75% of all
the cache misses. The remaining miss patterns (causing
25% of all the cache misses) are more complex and are
therefore not taken into consideration in this paper.

2 Mechanism of the Method Adaptive Data
Prefetching
In this paragraph we introduce a new prefetching method
that is able to exploit constant and alternate miss patterns
as observed in the memory access behavior in MPEG4.
We will call it �adaptive prefetching� because it adapts
itself at run time to the different inter-miss strides and to
the different inter-miss intervals. Our prefetch mechanism
is based on two hardware units: the miss pattern detector
and the block loader. The miss pattern detector should
detect the beginning of a constant miss pattern as well the
alternate miss pattern, while block loader should prefetch
ahead.
To detect the beginning of the constant miss pattern the
miss pattern detector proceeds as follows: It needs to
compare two recent inter-miss strides (X, Y) and their
corresponding inter-miss intervals (Tx,Ty). If they are
equal to each other(X=Y and Tx1=Ty1), this means that the
beginning of a new constant miss pattern is detected,
namely (<X, T>, <X, T>, �). We observed that 90% of
all the constant miss patterns have a pattern length bigger
then 3. To detect the beginning of the alternate miss
pattern the miss pattern detector proceeds as follows:
It needs to compare two inter-miss strides (X, Z) and their
corresponding inter-miss intervals (Tx, Tz) that occur
timely as follows: (<X,Tx>,<Y,Ty>,<Z,Tz>, <W,Tw>,�) .
If X=Z, Tx=Tz, Y=W, and Ty=Tw this means that the
beginning of a new alternate miss pattern is being
detected.
The block loader of the adaptive prefetching mechanism
initiates a prefetch operation within C clock cycles after
the occurrence of a miss. Where C is the inter-miss
interval minus the main memory latency.
The address to prefetch is obtained from the memory
address that caused the last miss plus the inter-miss stride
and the prefetching sequence continues as long as no new
cache miss has occurred.

3 Simulation Results
We used the Wattch SimpleScalar simulator [7][8] with
the Intel Strong ARM SA-1110 [1] and the Xscale[2]
microprocessor configurations.
As for MPEG4 decoder application (MoMuSys) we use
the reference software (version. 2, ISO/IEC 14496-5:2001)
[6]. For the video sequences, we used three different test
sequences: foreman, news, and container. We worked also

with different frames size CIF (352X288) and QCIF
(176X144) which are suitable for embedded systems.
 As we are interested with the effect of the data cache on
the architecture performances, five configurations of this
cache has been tested: 2KB, 4KB, 8K, 16KB, and 32KB.
we demonstrated that for multimedia application like
MPEG4, the access to the data cache can be optimized by
the use of new prefetching methods. The question that
arose is whether to choose between more data cache size
and the optimization of the data cache access, by
implementing our adaptive prefetching mechanism.

Figure 5: Data Cache miss reduction for decoding four
VOP�s IPPP using the adaptive prefetching mechanism.

Figure 6 : IPC improvement for decoding four VOP�s
IPPP using the adaptive prefetching mechanism.

. Fi
gure 7: Energy reduction for 2KB Data cache with

prefetching versus 8K KB Data cache without for
decoding fou VOP�s IPPP.

Figure 7 shows that the energy reduction for 2KB with
prefetching versus 8KB without prefetching. The energy
reduction is about 4.5 % for the different video sequence
and frame size. In this figure the additional external data
bus accesses are not taken into consideration because of
the following reason:

4 Conclusion
In this paper we have proposed a simple and new
prefetching mechanism that can be used in embedded
processors. We have demonstrated that the usage of such
mechanism can improve the IPC and reduce the energy
consumption of the cache memory significantly for
multimedia applications (MEPG4) especially for small
size data caches. We tested this technique among different
video test sequences (news, foreman, container) with
different frame sizes (QCIF and CIF), and we modeled
different micro architecture, the Intel Strong ARM 1110
and the xscale. Our mechanism presents a constant
improvement overall.
We showed that by the usage of our adaptive prefetching
mechanism with 2KB cache size, we were able to get an
IPC improvement better then using 8k without prefetching.
This leads to energy reduction about 5%, by the cost of
minimal additional hardware. While for embedded
processors the energy consumption and the cost are
dominant factors, the use of the adaptive prefetching
method is then a good alternative.
References

[1] Intel Corporation. Intel Strong ARM SA-1110.
Microprocessor, Developers manual, 2000.
[2] Intel corporation, �The Intel XScale
Microarchitecture technical summary�,
ftp://download.intl.com/design/intelxscale/XSacleDat
asheet4.pdf.
[3] Peter Kuhn, Algorithms, complexity analysis and
VLSI architecture for MPEG-4 motion estimation,
Kluwer Academic Publishers, 1999.
[4] Advanced RISC Machines Ltd (ARM) 1995,
ARM 7TDMI Data
Sheethttp://www.arm.com/arm/documentation?Open
Document.
[5] International Standard ISO/IEC 14496-2,
Information technology-Coding of audio-visual
objects�Part2: Visual, second edition 2001-12-01.
[6] The Wattch SimpleScalar simulator
http://www.ee.princeton.edu/~dbrooks/sim-wattch-
1.0.tar.gz.
[7]D. Burger and T. M Austin. The SimpleScalar Tool
Set, Version 2.0 Computer architecture News, Pages
13-25, June 1997.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

2k 4k 8k 16k 32k
Data Cache Size

%

News QCIF
News CIF
Foreman QCIF
Foreman CIF
Container QCIF
Container CIF

0.0

1.0

2.0

3.0

4.0

5.0

6.0

2k 4k 8k 16k 32k
Data Cache SIze

%

News QCIF
News CIF
Foreman QCIF
Foreman CIF
Container QCIF
Container CIF

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

News Foreman Container

% QCIF
CIF

