
 
Abstract— For data-dominant applications running on 

embedded systems, the energy consumed by the data 
memory organisation represents a very large cost. We 
present a method to explore the design space of an object-
oriented application in order to optimise the energy 
consumption and the footprint of the memory. Because 
we are working at the class design level, we can exploit 
the functionality of the system and focus on optimising 
the data related properties of the classes. We demonstrate 
our technique with a case study in which we achieve a 
gain of at least 35% in the energy cost factor. 

I. INTRODUCTION 
Embedded systems have limited hardware resources, 

such as a small memory capacity, and are often 
powered by batteries. To meet these non-functional 
requirements, the hardware aspects of the system must 
be taken into account at the software design level. The 
increasing complexity and the decreasing time-to-
market of embedded software systems force the 
designers to raise the abstraction level of the system 
design language. We focus on dynamic and data-
dominant applications, like modern network protocol 
and multimedia applications. It is known that up to 
50% of the energy is consumed by data related 
memory accesses and transfers [3,4]. The energy 
consumption is strongly dependent on the memory 
architecture of the hardware platform and the mapping 
of the data structures onto the memory devices, 
according to their sizes and number of memory 
accesses.  

The conventional OO-design methodology leads to 
small, relatively independent modules or classes. 
Classes typically encapsulate the data structures where 
the state of the objects is stored. This results in a 
dispersed view on the data of the whole application, 
which makes it quite difficult to globally optimise the 
memory footprint and the power consumption for the 
data of the whole design. When designing a new 
application, the choices to be made for the construction 
of the classes are nearly endless, creating a large 
design space. To guide the designer quickly to a cost-
efficient implementation, a fast exploration technique 
at a high abstraction level is needed. To achieve this, 
we systematically transform an original class design 
into more optimised ones. The following factors drive 
the class transformations: (a) we try to reduce the 

number of data accesses by exploiting the functionality 
of the application; (b) we try to minimize the memory 
footprint by merging classes, eliminating the storage of 
redundant information.  

This contribution is organized as follows. First, we 
discuss the hardware (memory) related aspects. Next, 
we propose our method. Finally, we introduce the case 
study to demonstrate our technique and present some 
results 1. 

II. THE MEMORY MODEL 
The performance gap between the external main 

memory and the processor has a great impact on the 
execution speed of the application. However, also a 
difference exists concerning energy: an off-chip 
memory access consumes more energy (i.e. two orders 
of magnitude) than an access to an on-chip memory 
due to the high capacitive communication bus, and it 
increases with the memory size. The Cacti memory 
model [5] produces an energy estimation value 
consumed for one data access, which is dependent on 
the technology and the size of the memory. Knowing 
the access behaviour of the application, we calculate 
the energy cost (i.e. only for the data) of the 
application as the multiplication of the energy value 
from the CACTI model and the number of data 
accesses. Note that the main memory used in our case 
study has a 32-bit bus and a size of 512 KB with two 
subbanks. This gives an energy value of 0.84 nJ for a 
data access in a 0.13µ technology. 

III. THE EXPLORATION METHOD 
The main characteristics of the domain of 

applications we want to investigate are: data-dominant, 
dynamic, non-deterministic and running on an 
embedded platform. The code transformations [6] must 
preserve the I/O behaviour of the application. 
Therefore, the method we propose consists of a 
number of consecutive steps. 

1. Start with the original application, designed conform 
to the OO-paradigm [1,2]. Complete source code must 
be available. 

2. Generate and store input and output values for the 
application in realistic situations.  

                                                           
UML diagrams illustrate the design concepts1  
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3. Instrument the application to count and to store the 
number of data accesses. Calculate the total memory 
footprint of the objects. 

4. Profile the application with the data from step 2. 

5. From the results of step 4, calculate the energy cost 
and locate the bottleneck class.  

6. Eliminate unnecessary data accesses, if present.  

7. Go through steps 4 and 5. Check the I/O behaviour. 

8. Eliminate redundant storage of data, if present.  

9. Go through steps 4 and 5. Check the I/O behaviour.  

10. Repeat from step 6 until all the involved classes are 
adapted. 

IV. THE CASE STUDY 
The design has not to be too complex for a first 

experiment, so we decide to design a rather simple 
multimedia game. We select the well-known Tetris 
game. The main activity of the game consists in the 
rendering of the board and the piece on the screen. 

Starting from the requirements, we develop a class 
model (and implement) it in a pure OO designer style, 
without any concern about power consumption. Two 
optimisation steps are worked out: the first one focuses 
on the reduction of the number of data accesses, the 
second one on reducing the memory footprint of the 
largest objects. 

The results are obtained with the MinGW port of 
gcc on a Pentium III at 864 Mhz with 265 MB RAM 
and running under Windows 2000. We use the Allegro 
library [7] for the rendering. 

A. The original design (Version1) 
To manage the complexity of the system, we 

partition the problem domain in modules: the user 
interface, the logic (intelligence) of the game and the 
rendering part. A sequential pipe processes the data: 
after the user input is interpreted by the user interface, 
the game logic calculates the next state of the game. 

Then the rendering module generates and displays the 
next frame on the screen. We consider the graphical 
processing as one of the main functionalities of the 
application and incorporate it at the conceptual level. 
We divide the board in two separate parts: an upper 
part of empty rows (which will not be stored explicitly) 

and the rest of the board that we call the BottomPart. A 
Piece is a collection of connected squares. The 
BottomPart is a collection of non-empty rows (array of 
Squares). Rows can be added when a piece lands in the 
bottom part and the colours of the squares are set. 
Filled rows are removed. We use a dynamic data 
structure to implement [8] this dynamic behaviour. 
Depending on the implementation of the BottomPart 
class, a Square has to store at least its colour (RGB 
value). The data for the graphical part of the game is 
stored in the PixelsBuffer. This buffer is a two 
dimensional array of pixels and captures the 
information of the next image of the board that will be 
displayed on the screen. The Screen class represents 

the video memory of the screen (640x480 pixels). 
Note that the pixelsBuffer is cleared and repainted 

for every frame, due to the separation of the logic and 
the rendering part (fig. 3). 

1) Profiling results 

We use two different input sets (fig. 4) for the game: 
a slow game (input1) and a faster game (input2). We 
run the application for three different resolutions of the 
squares (SW10 (10x10 pixels), SW20, SW25). The board 
has 16 rows and 10 columns.  
 

Fig. 5. demonstrates that the pixelsBuffer and screen 
objects are the most accessed for all the different test 
cases so they are the most dominant data types. 

Figure 2. The original design 

 

 

 
Figure 1. The BottomPart implementation 

 
Figure 3. Sequence diagram: Move Piece in BottomPart (v1) 
 



  
 

Figure 4. Flow of a slower and faster game 

 

 

B. Reducing data accesses: Incremental rendering 
(Version2) 
Because the pixelsBuffer is also an object with a 

large memory size, we focus the optimisation on the 
pixelsBuffer by reducing its number of accesses. The 
data members of the classes are not changed. The 
memory size of the objects remains the same as for 
Version1. We adapt the methods of the classes and 
repaint only those parts of the board that have changed. 

This results in a large decrease of the number of 
accesses for all the data structures (Fig. 6).  

C. Reducing memory area: Merging classes  
(Version 3) 
The pixelsBuffer object needs the most memory 

space. In this optimising step we try to reduce the 
memory area. In Version2, we use a static array for the 
pixels of the pixelsBuffer. This bitmap holds a copy of 
the display and is redundant to the information in the 
video memory. Also the content of the bottomPart 
object is redundant. We eliminate the PixelsBuffer 

class and merge its data with Piece and 
BottomPart.The data members are distributed over the 
other classes. The methods are moved to the 
corresponding classes, close to the data. The Piece 
class gets a small bitmap ( size SWxSW pixels) for the 
rendering. The BottomPart class keeps mainly the 
same structure as in the earlier versions, but each 
square in the rows has now its own bitmap with a 
capacity of SWxSW pixels. These bitmaps are 
dynamically created and deleted together with the rows 
on the board. The control of the rendering process is 
completely removed from the Controller class and 
distributed over other classes. 

1) Profiling results 
In comparison to Version2, the total number of data 

accesses (Table 1.) is reduced to 65%, which clearly 
demonstrates the large potential impact of our 
approach. 

Data Accesses Version 2 Version 3  ver3/ver2 

piece (Square ) 3684 1065312  

toprow 919 981  

rows 1138 1122  

squares 2307 286333  

bottomPart Total 4364 288436  

pixBuf Global 131136 0  

pixBuf UP 4191264 0  

pixBuf BP 328032 0  

pixBuf  Total 4650432 0  

screen 2339668 2239732  

blackSquare 0 1014120  

Total 6998148 4607600 65.84%
Table 1. Data accesses Version 2 versus Version 3 (sw20, input 1) 

 
Table 2 shows the values of the energy consumption 
for the three versions for input1. 

Energy (Joule) sw10 input1 sw20 input1  sw25 input1 

Version1 3.89E-02 1.55E-01 2.42E-01 

Version2 1.19E-03 5.87E-03 9.55E-03 

Version3 7.74E-04 3.86E-03 6.30E-03 
Table 2  Energy consumption for input1 
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Figure 6 Version1 versus Version2 

 
Figure 5.  Profiling results for Version1 

 


