

Abstract— For data-dominant applications running on

embedded systems, the energy consumed by the data
memory organisation represents a very large cost. We
present a method to explore the design space of an object-
oriented application in order to optimise the energy
consumption and the footprint of the memory. Because
we are working at the class design level, we can exploit
the functionality of the system and focus on optimising
the data related properties of the classes. We demonstrate
our technique with a case study in which we achieve a
gain of at least 35% in the energy cost factor.

I. INTRODUCTION
Embedded systems have limited hardware resources,

such as a small memory capacity, and are often
powered by batteries. To meet these non-functional
requirements, the hardware aspects of the system must
be taken into account at the software design level. The
increasing complexity and the decreasing time-to-
market of embedded software systems force the
designers to raise the abstraction level of the system
design language. We focus on dynamic and data-
dominant applications, like modern network protocol
and multimedia applications. It is known that up to
50% of the energy is consumed by data related
memory accesses and transfers [3,4]. The energy
consumption is strongly dependent on the memory
architecture of the hardware platform and the mapping
of the data structures onto the memory devices,
according to their sizes and number of memory
accesses.

The conventional OO-design methodology leads to
small, relatively independent modules or classes.
Classes typically encapsulate the data structures where
the state of the objects is stored. This results in a
dispersed view on the data of the whole application,
which makes it quite difficult to globally optimise the
memory footprint and the power consumption for the
data of the whole design. When designing a new
application, the choices to be made for the construction
of the classes are nearly endless, creating a large
design space. To guide the designer quickly to a cost-
efficient implementation, a fast exploration technique
at a high abstraction level is needed. To achieve this,
we systematically transform an original class design
into more optimised ones. The following factors drive
the class transformations: (a) we try to reduce the

number of data accesses by exploiting the functionality
of the application; (b) we try to minimize the memory
footprint by merging classes, eliminating the storage of
redundant information.

This contribution is organized as follows. First, we
discuss the hardware (memory) related aspects. Next,
we propose our method. Finally, we introduce the case
study to demonstrate our technique and present some
results 1.

II. THE MEMORY MODEL
The performance gap between the external main

memory and the processor has a great impact on the
execution speed of the application. However, also a
difference exists concerning energy: an off-chip
memory access consumes more energy (i.e. two orders
of magnitude) than an access to an on-chip memory
due to the high capacitive communication bus, and it
increases with the memory size. The Cacti memory
model [5] produces an energy estimation value
consumed for one data access, which is dependent on
the technology and the size of the memory. Knowing
the access behaviour of the application, we calculate
the energy cost (i.e. only for the data) of the
application as the multiplication of the energy value
from the CACTI model and the number of data
accesses. Note that the main memory used in our case
study has a 32-bit bus and a size of 512 KB with two
subbanks. This gives an energy value of 0.84 nJ for a
data access in a 0.13µ technology.

III. THE EXPLORATION METHOD
The main characteristics of the domain of

applications we want to investigate are: data-dominant,
dynamic, non-deterministic and running on an
embedded platform. The code transformations [6] must
preserve the I/O behaviour of the application.
Therefore, the method we propose consists of a
number of consecutive steps.

1. Start with the original application, designed conform
to the OO-paradigm [1,2]. Complete source code must
be available.

2. Generate and store input and output values for the
application in realistic situations.

UML diagrams illustrate the design concepts1

Towards Energy-Conscious Class Transformations for
Data-Dominant Applications: a Case Study

Marijn Temmerman§, Edgar G. Daylight†, Serge Demeyer*, Francky Catthoor†, Tom Dhaene*
§KdG dep. IWT, Salesianenlaan 30, 2660 Hoboken, Belgium.Email:{name.surname}@kdg.be

*UA, Middelheimlaan 1, 2020 Antwerpen, Belgium. Email:{name.surname}@ ua.ac.be
†IMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium. Email:{name.surname}@imec.be

3. Instrument the application to count and to store the
number of data accesses. Calculate the total memory
footprint of the objects.

4. Profile the application with the data from step 2.

5. From the results of step 4, calculate the energy cost
and locate the bottleneck class.

6. Eliminate unnecessary data accesses, if present.

7. Go through steps 4 and 5. Check the I/O behaviour.

8. Eliminate redundant storage of data, if present.

9. Go through steps 4 and 5. Check the I/O behaviour.

10. Repeat from step 6 until all the involved classes are
adapted.

IV. THE CASE STUDY
The design has not to be too complex for a first

experiment, so we decide to design a rather simple
multimedia game. We select the well-known Tetris
game. The main activity of the game consists in the
rendering of the board and the piece on the screen.

Starting from the requirements, we develop a class
model (and implement) it in a pure OO designer style,
without any concern about power consumption. Two
optimisation steps are worked out: the first one focuses
on the reduction of the number of data accesses, the
second one on reducing the memory footprint of the
largest objects.

The results are obtained with the MinGW port of
gcc on a Pentium III at 864 Mhz with 265 MB RAM
and running under Windows 2000. We use the Allegro
library [7] for the rendering.

A. The original design (Version1)
To manage the complexity of the system, we

partition the problem domain in modules: the user
interface, the logic (intelligence) of the game and the
rendering part. A sequential pipe processes the data:
after the user input is interpreted by the user interface,
the game logic calculates the next state of the game.

Then the rendering module generates and displays the
next frame on the screen. We consider the graphical
processing as one of the main functionalities of the
application and incorporate it at the conceptual level.
We divide the board in two separate parts: an upper
part of empty rows (which will not be stored explicitly)

and the rest of the board that we call the BottomPart. A
Piece is a collection of connected squares. The
BottomPart is a collection of non-empty rows (array of
Squares). Rows can be added when a piece lands in the
bottom part and the colours of the squares are set.
Filled rows are removed. We use a dynamic data
structure to implement [8] this dynamic behaviour.
Depending on the implementation of the BottomPart
class, a Square has to store at least its colour (RGB
value). The data for the graphical part of the game is
stored in the PixelsBuffer. This buffer is a two
dimensional array of pixels and captures the
information of the next image of the board that will be
displayed on the screen. The Screen class represents

the video memory of the screen (640x480 pixels).
Note that the pixelsBuffer is cleared and repainted

for every frame, due to the separation of the logic and
the rendering part (fig. 3).

1) Profiling results

We use two different input sets (fig. 4) for the game:
a slow game (input1) and a faster game (input2). We
run the application for three different resolutions of the
squares (SW10 (10x10 pixels), SW20, SW25). The board
has 16 rows and 10 columns.

Fig. 5. demonstrates that the pixelsBuffer and screen
objects are the most accessed for all the different test
cases so they are the most dominant data types.

Figure 2. The original design

Figure 1. The BottomPart implementation

Figure 3. Sequence diagram: Move Piece in BottomPart (v1)

Figure 4. Flow of a slower and faster game

B. Reducing data accesses: Incremental rendering
(Version2)
Because the pixelsBuffer is also an object with a

large memory size, we focus the optimisation on the
pixelsBuffer by reducing its number of accesses. The
data members of the classes are not changed. The
memory size of the objects remains the same as for
Version1. We adapt the methods of the classes and
repaint only those parts of the board that have changed.

This results in a large decrease of the number of
accesses for all the data structures (Fig. 6).

C. Reducing memory area: Merging classes
(Version 3)
The pixelsBuffer object needs the most memory

space. In this optimising step we try to reduce the
memory area. In Version2, we use a static array for the
pixels of the pixelsBuffer. This bitmap holds a copy of
the display and is redundant to the information in the
video memory. Also the content of the bottomPart
object is redundant. We eliminate the PixelsBuffer

class and merge its data with Piece and
BottomPart.The data members are distributed over the
other classes. The methods are moved to the
corresponding classes, close to the data. The Piece
class gets a small bitmap (size SWxSW pixels) for the
rendering. The BottomPart class keeps mainly the
same structure as in the earlier versions, but each
square in the rows has now its own bitmap with a
capacity of SWxSW pixels. These bitmaps are
dynamically created and deleted together with the rows
on the board. The control of the rendering process is
completely removed from the Controller class and
distributed over other classes.

1) Profiling results
In comparison to Version2, the total number of data

accesses (Table 1.) is reduced to 65%, which clearly
demonstrates the large potential impact of our
approach.

Data Accesses Version 2 Version 3 ver3/ver2

piece (Square) 3684 1065312

toprow 919 981

rows 1138 1122

squares 2307 286333

bottomPart Total 4364 288436

pixBuf Global 131136 0

pixBuf UP 4191264 0

pixBuf BP 328032 0

pixBuf Total 4650432 0

screen 2339668 2239732

blackSquare 0 1014120

Total 6998148 4607600 65.84%
Table 1. Data accesses Version 2 versus Version 3 (sw20, input 1)

Table 2 shows the values of the energy consumption
for the three versions for input1.

Energy (Joule) sw10 input1 sw20 input1 sw25 input1

Version1 3.89E-02 1.55E-01 2.42E-01

Version2 1.19E-03 5.87E-03 9.55E-03

Version3 7.74E-04 3.86E-03 6.30E-03
Table 2 Energy consumption for input1

REFERENCES
[1] E.Gamma et al., "Design Patterns", Addison-Wesley, 1995.
[2] B.P.Douglass, "Real Time UML", (sec. ed.). Addison-Wesley,

2000.
[3] N.Vijaykrishnan et al., "Evaluating integrated hardware-

software optimisations using a unified energy estimation
framework", IEEE Transactions on Computers, Vol.52, No.1,
pp.59-75, Jan. 2003.

[4] F.Catthoor et al., "Custom Memory Management Methodology
-- Exploration of Memory Organisation for Embedded
Multimedia System Design", ISBN 0-7923-8288-9, Kluwer
Acad. Publ., Boston, 1998.

[5] Shivakumari et al., CACTI 3.0: "An Integrated Cache Timing,
Power and Area Model",
http://research.compaq.com/wrl/people/jouppi/cacti3.pdf

[6] M.Fowler, "Refactoring", Addison-Wesley, 2000.
[7] The Allegro library; http://www.allegro.cc
[8] E.G. Daylight et al., "Analyzing energy friendly states of dyn.

app. in terms of sparse data struct.", Proc. of ISLPED, USA,
2002.

Figure 6 Version1 versus Version2

Figure 5. Profiling results for Version1

