
GOLIAT: an Optimizing Linker
for the IA-64 ArchiTecture

Bertrand Anckaert and Frederik Vandeputte

Ghent University
Department of Electronics and Information Systems (ELIS)

Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

Email: {banckaer, fgvdeput}@elis.UGent.be

Abstract— Modern compilers are extremely sophisticated
and complex. This enables them to produce highly opti-
mized code. However, due to the limited scope of compilers,
the optimization opportunities that arise from analyzing and
optimizing across module boundaries remain largely unex-
plored. We examined the viability of optimizing statically
linked programs for the IA-64 architecture. As a result, the
code size was reduced on average with 20% and the execu-
tion time with 4%.

I. Introduction

SPEED has always been a key factor in the computing
industry. This need for speed has its price, in this

case complexity. Modern processors and compilers are ex-
tremely sophisticated. The IA-64 architecture for example
incorporates many features to improve overall execution
speed, like software pipelining, speculation, etc. On the
other hand, more responsibility is given to compilers in or-
der to exploit these features.

We investigate how we can optimize statically linked pro-
grams for the IA-64 architecture at link-time. With stat-
ically linked programs, all library code is included in the
binary, which allows to perform some optimizations on the
entire program. Previous research for the Alpha [1] showed
that this approach is promising.

Goliat is built on top of Diablo [2], a framework for op-
timizing linkers. It allowed us to concentrate on the archi-
tectural details from the start, and leave the generic oper-
ations up to Diablo. As Diablo is mainly targeted towards
compaction, we also investigated how we can make IA-64
binaries as small as possible.

II. IA-64 Architectural Issues

Compared to e.g. the simple Alpha architecture, the IA-
64 architecture has a few properties that need special at-
tention. One of these is the instruction format. A program
consists of bundles of instructions, each bundle consisting
of three instructions and a template, indicating the type of
the instructions in the bundle.

As the template is only 5 bit wide, the number of combi-
nations is limited. This means that a stream of instructions
cannot simply be bundled one after another. Instead, NOP
instructions have to be inserted to produce valid bundles.
A careful mapping of instructions into bundles is necessary
to minimize the number of NOP instructions.

Another important aspect of the IA-64 is the register
stack. The purpose of the register stack is to minimize
memory accesses by providing registers as parameter pass-
ing mechanism and temporary space, instead of using the
usual stack. This is accomplished by performing register
renaming at procedure calls and returns, so that the output
registers of the calling procedure become the input registers
of the called procedure. As will be discussed in section III,
it affects analyses and optimizations and a careful modeling
is therefore necessary.

III. Analyses and Optimizations

During our research, we developed and explored various
optimizations and analyses, using the datastructures and
functions already available in Diablo. Some standard op-
timizations we investigated are unreachable code and data
elimination, liveness analysis and the corresponding useless
code elimination, constant propagation, copy propagation
and inlining.

Most of these optimizations require special attention be-
cause of the existence of the register stack. In fact, one has
to simulate to some extent the register renaming. To do
this, we used dummy instructions, thereby separating the
standard algorithms from the architectural details.

To be more specific, a dummy instruction is inserted be-
fore and after every call instruction. Then, for liveness
analysis [3] for example, the used en defined sets of those
instructions are constructed in such a way that the model-
ing remains accurate. This can be done by looking at the
size of the register stack frame, the number of local and
output registers, and by marking certain of these registers
as used and/or defined.

IV. Reducing Load Instructions

The IA-64 architecture has a special register known as
the global data pointer (gp). This pointer is used to access
the GOT section (i.e. Global Offset Table). Normally,
there is one such table for each object file, containing the
constant addresses relevant for that object file.

Each procedure of a module assumes that register gp
points to the correct GOT table. This means that inter-
modular or indirect procedure calls first have to load the
address of the correct GOT table into gp before making the
actual call. When the procedure returns, register gp has to



0,0

5,0

10,0

15,0

20,0

25,0

30,0

gzip vpr mcf parser vortex bzip2 diablo avg

Benchmarks

R
ed

uc
ed

 lo
ad

 in
st

ru
ct

io
ns

 (
%

) 
 

Static
Dynamic

Fig. 1

Static and dynamic reduction of load instructions

be restored to its original value. This means an extra save
and restore before and after procedure calls is needed.

With most statically linked programs however, there is
only one such table. This means that register gp is constant
during the entire execution of the program. So in fact, the
save and restore instructions of register gp are redundant
and can be eliminated. As these instructions appear quite
often, removing these instructions reduces the code size
with 4%.

Apart from that, another important optimization is pos-
sible. The GOT table is used to store constant addresses, so
that they can be loaded into a register and used somewhere
in the program. This means however that every time that
address is needed, the correct address in the GOT table
has to be calculated and a load has to be executed:

add rx = offset22, r1
ld ry = [rx]

A compiler looking at a single module does not know
what the address will be in the final program nor whether
it will be part of a shared library and must generate code
that will work regardless. Whenever possible, it is far more
efficient to encode those addresses directly into an instruc-
tion. As code and data addresses on the IA-64 architec-
ture are 64 bit long and respectively start with 0x4.. and
0x6.., we need to find an efficient way to encode these
huge constants.

The IA-64 architecture provides an instruction to move a
constant of 64 bit directly into a register. This instruction
is expensive however, as it fills two slots of a bundle and
the number of bundles containing this kind of instruction
is very limited.

A better way is by trying to encode the address with the
following instruction (with constant22 + base = [rx]):

add ry = constant22, base

For this to work, the base register has to contain a value
of the form 0x4.. or 0x6... For data addresses, we are very
lucky, because we can use register gp itself, as it contains
the starting address of the GOT table, a data section.

As there normally is no register containing a constant
code address, there is some extra effort needed there. More-
over, with this type of add instruction (having a 22 bit wide
constant), only four global registers can be used as base
register, two of them being a special purpose register.

cmp.xx p6, p7 = pp, qq
(p7) br D

...
(p3) br E

A B

...C ...D ...E

p7 p6 br D
F

p3

jump
fallthrough

cmp.xx p6, p7 = pp, qq
(p6) br D

...
(p3) br E

A B

...C ...D ...E

p7 p6 p3

jump
fallthrough

BEFORE

AFTER

Fig. 2

Switching the fallthrough path of block A

Whatever register is chosen, it first needs to be freed in
the entire program. Evidently, this step is quite intrusive
and introduces some new problems, on which we will not
elaborate.

As a result, many unnecessary load instructions are con-
verted into simple and fast add instructions. As a byprod-
uct, a preceding instruction, producing the address of the
entry in the GOT table, can be eliminated by useless code
elimination in most cases.

As you can see in figure 1, this optimization is very ef-
fective; many load instructions are eliminated, both stati-
cally as well as dynamically. As a result, this optimization
has an important influence on the execution time of some
benchmarks.

V. Code Placement

A good placement of hot code blocks can reduce the
overall execution time, as it may reduce page faults, cache
misses and the number of taken branches on hot paths [4].
In order to determine what the hot blocks and paths are,
profile information is used.

For the code-layout, we used the closest-is-best princi-
ple [4]. By putting code blocks together that are frequently
executed after one another, we reduce the probability that
those blocks are mapped onto the same cache line. More-
over, those blocks will probably use up less memory pages.

Another profile-guided optimization is to minimize the
number of jumps within hot code. For direct jumps, this
can be done by putting the target block directly after the
other, thus making the jump instruction redundant.

For conditional jumps, we can flip the predicate used
with the jump instruction. In fact, the preceding compare
instruction on the IA-64 architecture always produces two
predicates with complementary values. The algorithm is
illustrated in figure 2.

As a result of these optimizations, page faults are re-
duced by 35%, taken branches are reduced by 21% and
instruction stalls by 38%.

VI. Instruction Scheduling

In section II, we mentioned that the mapping of instruc-
tions into bundles is very important. A good strategy is



0,0

5,0

10,0

15,0

20,0

25,0

30,0

gzip vpr mcf parser vortex bzip2 diablo average

Benchmarks

T
ot

al
 c

od
e 

co
m

pa
ct

io
n 

(%
) 

 

Fig. 3

Code compaction results

to place the instructions of the hardest instruction types
first [5]. Instruction types are called hard if there are few
bundle types containing that instruction type.

Apart from bundling the instructions, they need to be
scheduled first, meaning that an appropriate and efficient
order must be determined. To do this, a dependency graph
must be built, modeling the various dependencies that exist
between instructions.

The goal is of course to have an optimal instruction
scheduling as a result, but as the instruction scheduling
problem is NP-hard [3], heuristics are inevitable.

There exist two types of scheduling algorithms, namely
local scheduling algorithms and global scheduling algo-
rithms [6]. Local algorithms operate within individual ba-
sic blocks, where global algorithms operate across basic
blocks.

We implemented two local algorithms: list scheduling
and the noptimizer. List scheduling is a very popular
greedy algorithm, as it is simple, fast and effective [6].

We also developed another local algorithm, the nopti-
mizer, which is based on the algorithm presented in [5].
The algorithm is a branch and bound version of the opti-
mal scheduling algorithm, in order to keep the execution
time within reasonable bounds. This algorithm is mainly
targeted at reducing the number of NOP instructions that
have to be inserted.

With this algorithm, the total number of NOP instruc-
tions can be reduced with 18% compared to the number of
NOP-instructions in the original binary, reducing the total
number of instructions with 5%.

We also developed a global scheduling algorithm, the
globtimizer, which is roughly based on [7]. It is also a
branch and bound algorithm and uses a cost function to
determine the optimal result. This cost function can be the
number of NOP instructions, the number of cycles, etc.

The idea is to move instructions between basic blocks
upward and downward. Then those basic blocks are sched-
uled using a local scheduling algorithm.

Currently, only some very simple regions are considered.
Despite that, the globtimizer is able to reduce the number
of NOP instructions with 23%, if used in combination with
the noptimizer for scheduling the basic blocks.

-2,0

0,0

2,0

4,0

6,0

8,0

10,0

gzip vpr mcf parser vortex bzip2 diablo average

Benchmarks

S
pe

ed
up

 (
%

) 
 

Fig. 4

Speedup results

VII. Global Results

In figure 3 and figure 4, the total results we achieved with
our research are illustrated: the code size is reduced with
20%, and execution time is reduced with about 4%. The
original binaries were produced with gcc 3.2, using glibc
2.3.1.

The compaction is mainly achieved with dead code elim-
ination (which eliminates redundant code blocks), our in-
struction scheduling and bundling algorithms and the re-
duction of load instructions. As you can see, the com-
paction ratio is uniform across all benchmarks.

The speedup is mainly caused by an improved code
placement and by the reduction of load instructions. As
you can see, the results show large variation. In fact, the
results are very similar to the reduction of dynamic load
instructions in figure 1, indicating that these load instruc-
tions are a real bottleneck for some benchmarks.

VIII. Conclusions

We have demonstrated that optimizing statically linked
programs at link-time is indeed worthwhile for the IA-64
architecture, both towards speed as well as towards com-
paction. We showed that some properties of the IA-64
architecture need special attention in order to preserve cor-
rectness.

References

[1] R. Muth, S. Debray, S. Watterson, and K. De Bosschere, “alto :
A link-time optimizer for the compaq alpha,” Software – Practice
and Experience, vol. 31, pp. 67–101, Januari 2001.

[2] Bruno De Bus, Daniel Kästner, Dominique Chanet, Ludo
Van Put, and Bjorn De Sutter, Software Techniques for Program
Compaction, vol. 46, August 2003.

[3] S. Muchnick, Advanced Compiler Design And Implementation,
Morgan Kaufmann Publishers, 1997.

[4] K. Pettis and R. Hansen, “Profile guided code positioning,” in
Proceedings of the ACM SIGPLAN ’90 conference on program-
ming language design and implementation, July 1990, pp. 16–27.

[5] S. Haga and R. Barua, “EPIC Instruction Scheduling Based
on Optimal Approaches,” in 1st Annual Workshop on Explic-
itly Parallel Instruction Computing Architectures and Compiler
Technology, Austin, TX, 2001.

[6] B. De Sutter, “General-purpose architecture instruction schedul-
ing techniques,” Tech. Rep. DG 98-09, Universiteit Gent, Novem-
ber 1998.

[7] S. Winkel, “Optimal global scheduling for itanium(tm) proces-
sor family,” in Proceedings of the Workshop on Explicitly Par-
allel Instruction Computing (EPIC) Architectures and Compiler
Techniques, November 2002.


	Introduction
	IA-64 Architectural Issues
	Analyses and Optimizations
	Reducing Load Instructions
	Code Placement
	Instruction Scheduling
	Global Results
	Conclusions

