
Java SPEC favours 32-bit platforms

Kris Venstermans Koen De Bosschere
ELIS, Universiteit Gent
St.-Pietersnieuwstraat 41

9000 Gent, Belgium
tel: +32 9 264 {33 67, 34 06 }

fax: +32 9 264 35 94
{kvenster,kdb}@elis.UGent.be

Abstract— The platform-agnostic nature of Java is made possible
thanks to the presence of the Java Virtual Machine (JVM) with a well
defined set of bytecodes and library routines. This requires the availabil-
ity of a JVM for many different platforms, 32-bit as well as 64-bit wide.
During an effort to port the Jikes Research Virtual Machine (RVM) to
the 64-bit PowerPC, we stumbled into a number of problems that prove
that the Java specification was designed with a 32-bit platform in mind
and that prevent an efficient implementation on a 64-bit platform. All
described problems boil down to the fact that all types have a fixed size,
while it is in the nature of some types to automatically adapt to the word-
size of the current platform. We would like to share those issues with the
community, so that future SPEC designers can take into account these
flaws. While Java declares to be platform independent, we believe some
aspects of the Java SPEC are designed too specific for a 32-bit platform.

Keywords—Java, JVM SPEC, 64-bit platform, porting experience

I. Introduction

The 64-bit world is not new to a variety of back-end
server applications, but its growing popularity towards con-
sumer products will make it the major universe tout court
in a few years. The main reason that the market for con-
sumer applications is running behind, is that this market
is the x86-market and in this segment there is only re-
cently 64-bit hardware available. This is in contrast with
the back-end application market, for which special (64-bit)
hardware gets developed for many years. With the avail-
ability of the 64-bit hardware on the x86-market, soon ev-
eryone will be confronted with 64-bit applications.

In order to be able to explore the new opportunities in
the 64-bit world, we cooperated on a 64-bit port of the Jikes
Research Virtual Machine. It is during this experience that
we encountered some limitations of Java that either have a
negative influence on the performance, or that force us to
write separate code for each platform even when semantic
similarity exists.

The rest of this paper is organized as follows. In the
next section we’ll touch some limitations and performance
bottlenecks. Section III will present some proposed im-
provements, and at the end some conclusions in section IV
will summarize this paper.

II. Performance Issues and Limitations

A. No natural sized type

The Java SPEC is defined as if all types have a fixed size.
However, in practice we experience a whole different world

if we shift between 32-bit platforms and 64-bit platforms.
Some types (should) automatically adapt to the word size
of the machine. What is missing in Java is an integral type
of natural size. Probably the best reason to have a natural
sized type is for performance. Let’s say we define a type
that corresponds to the size of the machine word, as long
as a minimum size is guaranteed (e.g. 32-bit). Such a type
would be ideal for all small ranges used by programmers,
such as in for-loops. If we would use another type, then
unless the ISA has a set of 32-bit ALU-instructions, most
results of ALU-operations will have to be masked to mimic
the 32-bit operation. We believe that adding such a type
would not break the platform independence of Java as long
as we can guarantee that overflow is of no concern.

B. 4GiB limitations

Who wants limitations? As long as something is phys-
ically possible, it should be allowed as much as possible.
Unfortunately, many Java constructs are limited in size by
the Java SPEC itself. Those limitations are not visible
on 32-bit platforms, because the physical resources have
the same scope. On 64-bit platforms, physical borders are
stretched much further. The Java SPEC is obvious once
more designed with a 32-bit platform in mind.

For example the size of an array is defined as an int,
which is bound to a 32-bit value. If we take into account
the fact that this is a signed value (which btw is complete
nonsense), the largest possible byte-array can never exceed
the 2GiB border. This probably is not an acute problem
yet, but with the shift towards the 64-bit world this will
become an unavoidable issue in time.

C. Wasted Stack Space

All actual Java types are divided into 2 categories as
seen in table I: category I&II computational types. Each
category is defined in terms of 1 or 2 stack slots respectively.
Now a performance problem arises when we ’d like to make
a simple implementation of the Java stack model. A lot of
space gets wasted on the 64-bit version. The reason for
this is that a reference has become larger, but still has to
take one stack slot. So a stack slot will become 64 bits.
All other types that do not need this extension, are forced
to use the same stack slot definition. So int-like types take
one stack slot of 64 bits even though it would suffice to



Java 32 bit platform 64 bit platform
types Logical Size on Logical Size on

size Cat stack size Cat stack
boolean 32 bit I 32 bit 32 bit I 64 bit
byte 32 bit I 32 bit 32 bit I 64 bit
char 32 bit I 32 bit 32 bit I 64 bit
short 32 bit I 32 bit 32 bit I 64 bit
int 32 bit I 32 bit 32 bit I 64 bit
float 32 bit I 32 bit 32 bit I 64 bit
reference 32 bit I 32 bit 64 bit I 64 bit
returnAddress 32 bit I 32 bit 64 bit I 64 bit
long 64 bit II 64 bit 64 bit II 128 bit
double 64 bit II 64 bit 64 bit II 128 bit

TABLE I

Java types with their size information

provide 32 bits and longs and doubles will take 2 slots (128
bits) instead of the necessary 64 bits. On a 64-bit platform,
except for references, space is wasted for almost every type.
Thus for int-like types, doubles and longs, we have half of
the space wasted.

D. Wasted Space for Locals

For the allocation of the locals, we have no other choice1

than allocating a long and a double twice the space as a
computational type of category I. This is so because the
Java-to-bytecode compilers automatically increase the lo-
cal index with 2 units each time they encounter a long or a
double. Due to the fact that a reference takes 64 bits on a
64-bit machine, a long or a double will occupy 128 bits in-
stead of the normal 64. Another consequence is that (even
on 32-bit platforms) the use of some specific bytecodes,
prohibits the use of other bytecodes. e.g. dload 0 takes lo-
cal slot 0 and 1, so e.g. dload 1, iload 0 and aload 1 can
never be used in the same function.

III. Proposed Improvements

A. New Type Category

If we have an other look at table I, we see two categories
of computational types. So far so good: two different cat-
egories are probably essential to express some differences
between some types. But by which motivations did those
two type categories get created? Looking at table I, more
specific to the side of the 32-bit platform, we see that all
types that do not fit into 32 bits are separated of those that
do. However, if we take a look at the other side of table I,
it is clear that this is no longer the case on a 64-bit plat-
form. In our opinion it is fine to isolate longs and doubles
in a separate category, but to dump all the rest in a single
category was less intuitive.

Considering different platforms, it would be a good idea
to group together those types that change their size ac-

1speaking for interpreters and JIT compilers that need to be fast.
Optimizing compilers can do a better job, but they need to do extra
work that isn’t necessary on 32-bit platforms

cordingly. So we could create a category III computational
type, next to the existing two types of the Java SPEC
[LY99]. A reference and a returnAddress then should be a
member of this new category III instead of category I com-
putational type. If we introduce a new word sized type to
solve the problems of section II-A and II-B, it would also
belong in this new category III.

The current Java Specification, has lacked to treat the
“word-sized” types properly. It is because of those types
being dropped with the int-like types, that sizes get very
unnatural on a 64-bit platform. In the next sections we’ll
discuss some steps to take to solve the issues of sections
II-C and II-D. We will also come back on the issue covered
in this section, namely the need for a third type category.

B. Independent Type Categories

As stated before, the separation of longs and doubles in a
separate type category is probably a good thing to do. But
worse is the dependencies that still exist between the differ-
ent type categories. Because the Java SPEC e.g. explicitly
says that a type of category I takes one stack slot and a
type of category II takes two stack slots, a dependency gets
created that states that a category II type always has to
take twice the space of a type of category I. We believe it is
possible to define all types independent of there actual size
(or number of stack slots). If all types are independent of
their size, then we can implement the stack model without
the overhead of wasting space for almost every type.

B.1 Wasted Space for Locals

Probably the easiest solution to get rid of the double in-
dex, used for types of category II is to say don’t use 2 index
numbers, just assign one index for each local variable, no
matter which type. This would be very convenient for the
64-bit implementation, discussed in section II-D, but would
complicate the 32 bit implementation considerably. That
can not be our intention, so something more general appli-
cable would be appreciated. The cleanest solution to this
is in our opinion to number the parameters independent by



computational type category.
Let’s check with the bytecodes if this is possible. Well,

some examples of bytecodes accessing the local variables
are e.g. iload 0, aload <n>, dstore 2. If we take a look to
the complete set of bytecodes that can access the locals, we
notice that they all include the type of the variable they
want to access. This means that they also implicitly know
the type category. So there are no further complications
that stops us from using the new way of indexing.

With this new way of indexing, the semantics of a dload 3
would then be “load the 3th local variable of computational
type category II”. This way it is also no longer the case that
the use of one bytecode obstructs the use of another. We
can use the dload 0 as well as the dload 1, aload 0, iload 1,
..., what leads to possible better usage of shorter bytecodes
which will almost certain lead to shorter class files.

We could use the new indexing technique, for starters,
only on the existing 2 type categories. This way we would
recycle (on 64-bit machines of course) the wasted second
stack slot for locals of type double and type long. If we
agree on introducing a third type category, proposed in
section III-A, we could go further and store the locals of
the remaining type category I on 32-bit slots. The worst
case will then be the remaining of one 32-bit slot of waste
for the purpose of alignment.

B.2 Wasted Stack Space

The previous subsection concerned the local stack space.
In this subsection we will focus on the operand stack. We
will also start our discussion in assumption we have two
type categories. How can we make both categories size in-
dependent ? The condition that has to be met to make this
possible, is that each bytecode that accesses the operand
stack has to be defined in terms of manipulating (a subset
of) only one computational type category.

If we take a look at the bytecodes, we notice most of
them are argument specific (e.g. aaload, fstore, dmul) so the
condition is met here because they explicitly know the type
of the argument, which is more strict than only knowing
the computational type category. Unfortunately, it is sad
to notice that the Java SPEC is once again not consistent.
This approach is not pursued for all the bytecodes. E.g.
the dup bytecode family implicitly takes into account the
number of stack slots. A nicer approach would have been
to make separated variants for each computational type
category. So it really is the bad design of the dup bytecode
family which implicitly force longs and doubles to take 2
stack slots.

So in our approach we would need to introduce some
extra bytecodes to make separate variants for each type
category. This is not a great problem, because there are
only about 200 out of 256 possibilities used. We will now
consider each bytecode of the dup family and redefine and
extend them, as we think should make a better specifi-
cation. Following the Java SPEC, dup and dup x1 are
bounded to category I computational types [LY99]. So we
do not need to change the semantics of those bytecodes.

Bytecodes dup x2, dup2 and dup2 x1 have 2 forms and
will be bound to the form with all category I computa-
tional types. For the abandoned form, we will introduce 3
new bytecodes: dup xc2, dupc2 and dupc2 x1 resp., where
the c2 indicates one type of category II in contrast to a sin-
gle number 2 which indicates 2 times a type of category I.
Finally the bytecode dup2 x2 has four forms. We bound it
to the form with all computational types of category I and
introduce three new bytecodes to cover the three remaining
forms: dupc2 x2, dup2 xc2, dupc2 xc2.

So with 6 extra bytecodes, we can make the type cate-
gories I and II independent of each other’s size as far as the
operand stack is concerned. With this little adjustment, it
is no longer compulsory to give e.g. a double twice the stack
space as e.g. a reference.

What in case of the third computational type category?
Well in practice it will probably not be the case that, on the
64-bit machine, every type takes its minimal space. Due
to alignment problems is it acceptable on a 64-bit platform
to allocate 64-bit stack slots for every type. So by split-
ting the first computational type category, we will not be
able to allocate the new category I types on 32-bit slots.
So we could state that for practical reasons, we have no
need for making the first and third type category indepen-
dent of their size. But theoretically we think it would have
been a cleaner design strategy to do so. So let us once
again go to the bytecode level and see what needs to be
done to do create the independence between the first and
third type category. Of course the dup bytecode family
now needs to be extended further to cover all three type
categories. Besides this, only three other bytecodes needs
to be extended, namely ldc, ldc w and swap. Those three
bytecodes do need to get an equivalent for the new type
category.

IV. Conclusions

In this paper we have shown you some flaws in the Java
Specification concerning platform independence. We would
like to bring under attention the missing of a natural sized
integral type. Second we would like to emphasize the incon-
sistent design of the bytecode set, which leads to difficul-
ties regarding efficient implementations of the stack model
on different platforms. With the proposed improvements
to the Java SPEC, an implementation has more freedom
in choosing sizes for every computational type category. A
64-bit implementation could for example allocate 64 bit for
every category, without the need of sophisticated compiler
analysis (which is the case now if you want to achieve the
same performance gain).

References

[LY99] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. Addison Wesley Longman, 2nd edition, 1999.


