Electrocardiography gated single-photon emission tomography (gated SPET) allows the assessment of regional perfusion and function simultaneously and in full spatial congruency. In this study changes in global and regional left ventricular function in response to dobutamine infusion were assessed in ten healthy volunteers using sequential gated SPET myocardial perfusion acquisitions. Four consecutive gated SPET images were recorded 60 min after injection of 925 MBq technetium-99m tetrofosmin on a three-head camera equipped with focussing collimators. Two acquisitions were made at rest (baseline 1 and 2), and the third and fourth acquisitions were started 5 min after the beginning of the infusion of 5 and 10 mu g kg(-1) min(-1) dobutamine, respectively. Systolic wall thickening (WT) was quantified using a method based on circumferential profile analysis. Left ventricular ejection fraction (LVEF) and volumes were calculated automatically using the Cedars-Sinai program. Nine of the ten subjects presented a definite increase in WT during dobutamine infusion. WT increased on aver age from 46%+/-14% at baseline to 71%+/-23% (range: 37%-106%: P<0.05) during 5 mu g kg(-1) min(-1) dobutamine infusion and to 85%+/-25% (range: 62%-123%; P<0.05 with respect to WT at 5 mu g kg(-1) min(-1)) during 10 mu g kg(-1) min(-1) dobutamine infusion. Apical segments showed the largest WT at baseline. The average WT response to dobutamine was similar for all parts of the myocardium. It is concluded that changes in WT induced by infusion of low-dose dobutamine can be assessed by sequential gated SPET myocardial perfusion studies. The "stress gated SPET" protocol proposed in this study might be helpful to distinguish viable from scar tissue in patients with coronary artery disease, by demonstrating a preserved inotropic response in hypoperfused myocardium.