Embedding of semiconductor chips into organic substrates allows a very high degree of miniaturization by stacking multiple layers of embedded components, superior electrical performance by short and geometrically well controlled interconnects as well as a homogeneous mechanical environment of the chips, resulting in good reliability. At PCB manufacturing level, 50 mum thin chips have been embedded with pitches up to 200 mum in up to 18ldquotimes24rdquo panels. Embedding of chips at 100 mum pitch has been achieved at prototype level. Further developments of chip embedding can extend to even finer pitches without redistribution methods only with concurrent developments in ultra fine line patterning, plating methods and chemistries, assembly machines. New manufacturing processes should combine PCB processing and die assembly in one production line in order to benefit the most from this combination without the difficulties of transport between different manufacturing plants. Furthermore, new testing methodologies will be developed and a new supply chain will be created due to incorporation of embedding technologies to PCB production. This paper discusses in detail the technology and manufacturing challenges arisen from the integration of embedding technologies to PCB manufacturing processes.