Reservoir Computing (RC) is increasingly being used as a conceptually simple yet powerful method for using the temporal processing of recurrent neural networks (RNN). However, because fundamental insight in the exact functionality of the reservoir is as yet still lacking, in practice there is still a lot of manual parameter tweaking or brute-force searching involved in optimizing these systems. In this contribution we aim to enhance the insights into reservoir operation, by experimentally studying the interplay of the two crucial reservoir properties, memory and non-linear mapping. For this, we introduce a novel metric which measures the deviation of the reservoir from a linear regime and use it to define different regions of dynamical behaviour. Next, we study the relationship of two important reservoir parameters, input scaling and spectral radius, on two properties of an artificial task, namely memory and non- linearity.