We present a very compact analog-to-digital convertor (ADC) for use as a standard cell. To achieve an inherent accuracy of at least 12-bits without trimming or calibration, extended counting A/D-conversion is used. Here, the circuit performs a conversion by passing through two modes of operation: first it works as a 1st-order incremental convertor and then it is reconfigured to operate as a conventional algorithmic converter. This way, we obtain a Nyquist-rate converter that requires only 1 operational amplifier and achieves 12-bit accuracy performance in 13 clock cycles with 9 bit capacitor matching. The circuit is designed in 0.18 mu m CMOS with a thick oxide option. The resulting analog core occupies a chip area of only 0.011 mm2 and the complete digital control and reconstruction logic (including additional test features and storage registers) is 0.02 mm2. The analog blocks of the circuit consume 1.2mW and the digital 0.4mW. At a sample rate of 1 MS/s, the peak SNDR is 74.5dB and the dynamic range is 78dB, constant over the Nyquist band. The worst-case integral non-lineairity (INL) is within plus or minus 0.55 LSB.