The most important step in the final testing of fabricated ASICs or the functional testing of ASIC and FPGA designs is the generation of a complete test set that is able to find the possible errors in the design. Automatic Test Pattern Generation (ATPG) is often done by fault simulation which is very time-consuming. Speed-ups in this process can be achieved by emulating the design on an FPGA and using the actual speed of the hardware implementation to run proposed tests. However, faults then have to be actually built in into the design, which induces area overhead as (part of) the design has to be duplicated to introduce both a faulty and a correct design. The area overhead can be mitigated by run-time reconfiguring the design, at the expense of large reconfiguration time overheads. In this paper, we leverage the parameterised reconfiguration of FPGAs to create an efficient Automatic Test Pattern Generator with very low overhead in both area and time. Experimental results demonstrate the practicality of the new technique as, compared to conventional tools, we obtain speedups of up to 3 orders of magnitude, 8X area reduction, and no increase in critical path delay.