We present an optofluidic chip in polymethyl methacrylate (PMMA) that combines optical trapping of single particles with confocal Raman spectroscopy. We introduce the design of the optofluidic chip and the ray-tracing simulations combined with mathematical calculations used to determine the optical forces exerted on the particles and to model the excitation and collection of Raman scattering. The optical trapping is done using a single-beam gradient trap realized by a high numerical aperture free-form reflector, monolithically embedded in the optofluidic chip. The focused beam functions both as the excitation beam as well as the trapping beam. The embedded freeform reflector is also used to collect the Raman scattered light generated from the trapped particle. We discuss the fabrication process for the prototyping of the chip, which consists of an ultraprecision diamond turning step and a sealing step. Finally, we demonstrate the functionality of the optofluidic chip in a proof-of-concept experimental setup and trap polystyrene beads with diameters from 6 to 15m. We characterize the maximal transverse optical trap strength in the sample flow direction using the drag force method, measuring average efficiencies that lie between 0.11 and 0.36, and perform confocal Raman measurements of these particles.