Networks with torus interconnection topology are widely used due to the symmetry in traffic distribution. In order to ensure deadlock-freedom and provide adaptive routing in torus, at least two Virtual Channels (VCs) per physical channel are required to break the cyclic channel dependencies. However, VCs increase the arbitration latency and consume large power/area overheads which is undesirable, particularly for on-chip networks with limited power/area budgets. In this paper, we propose a novel technique for routing in wormhole-switched 2D torus networks. The proposed method relies on the Abacus Turn Model (AbTM) and Worm-Bubble Flow Control (WBFC) to support adaptive and deadlock-free routing without using VCs. Furthermore, the network blocking is reduced by providing on-demand routing adaptiveness through reconfiguration. The experimental results demonstrate the efficiency of the proposed scheme in terms of performance and hardware overhead.