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Abstract

Branch prediction is the process of predicting the
outcome of conditional branches before they are ac-
tually executed. Branch prediction techniques are
divided into two broad classes: static and dynamic.
Static branch prediction associates a fized predic-
tion to each static branch at compile time whereas
dynamic strategies makes a prediction at run time.
Today’s most accurate static method is evidence-
based static prediction (ESP), which uses machine
learning to generate a prediction based on a set of
static features [3]. By extending the static feature
set of ESP, we further reduce the miss rate of 17.4%
for ESP towards 11.6% (SPEC 2000). Although
almost all dynamic predictors do better than static
methods, highly accurate static prediction can serve
as prediction for weak dynamic predictions in e.g.,
gshare.

1 Introduction

Deeply pipelined computer architectures as we
know them today rely on a fetch mechanism that
provides one or more useful instructions every clock
cycle. This constant feeding process encounters dif-
ficulties because of the control dependencies, which
determine the flow of the program at run time. Es-
pecially conditional branches cause difficulties: the
next instruction to be executed is not known until
the branch condition (e.g., argument equals zero)
is computed. This computation typically com-
pletes 3-14 cycles after the branch has entered the
pipeline, meanwhile no further instructions can be

fetched.

To solve this situation, an essential part of mod-
ern microarchitectures consists of branch predic-
tion. A branch predictor predicts the outcome of
the branch condition so that instructions on the
predicted path can enter the pipeline the next cy-
cle. This method enables a constant pressure on
the pipeline but involves additional complications
for handling speculative instructions and verifying
the prediction. Of course the branch instruction it-
self is executed to verify the prediction. On a cor-
rect prediction all speculative instructions are use-
ful and finish earlier compared to no branch predic-
tion. On a misprediction however, all speculative
work has to be undone before the correct path exe-
cutes. This means that on a misprediction there is
even an extra penalty compared to not predicting.
As pipelines deepen and the number of instructions
issued per cycle increases, the penalty for a mispre-
diction also increases.

After a brief related work, this paper starts with
the discussion of an improved static branch predic-
tion scheme. Then we explore where highly accu-
rate static branch prediction can serve as prediction
for weak dynamic predictions.

2 Related work

Ball and Larus presented in [1] a set of heuristics
for static branch prediction by encoding knowledge
about common programming idioms. They use
information about branch opcode, operands and
characteristics about the branch successor blocks.

Calder et al. use neural networks and deci-



sion trees to generate a general profile to statically
predict the branch behaviour in new unseen pro-
grams [3]. Their so-called evidence-based static
prediction method is, to our knowlegde, the best
static prediction scheme.

Important contributions in dynamic branch pre-
diction include the proposal of the gshare predictor
in [4], which makes a prediction based on the XOR-
combination of branch address and global history.
Gshare is considered as one of the best dynamic
predictors known today (except for hybrid predic-
tors).

The idea of combining static and dynamic branch
prediction is recently proposed in [5]. Based on pro-
filing analysis they select branches for static pre-
diction. When an appropriate set of statically pre-
dicted branches is chosen, it reduces the effect of
aliasing in the dynamic predictor and results in
higher accuracies.

3 Improved static prediction

Calder et al. [3] propose a technique which they
call evidence-based static prediction (ESP). The
main idea of their work is to use a set of static
features associated with each branch as input to
some machine learning technique. The ESP fea-
ture set contains information about branch opcode,
branch direction, branch operands, whether the ba-
sic block is a loop header or not and also character-
istics about dominator, postdominator and ending
type of both successor basic blocks; a total of 30
static features. On average, ESP branch prediction
results in a miss rate of 17.4%. !

For the experimental results, we use the Sim-
pleScalar/Alpha simulator (sim-bpred) [2]. We
simulate the programs in the SPEC CPU 2000 suite
of integer benchmarks which are compiled with the
Compaq C compiler version V6.3-025 with opti-
mization flags —arch ev6 -fast -04. We instru-
mented each program, i.e. we determine for every
conditional branch instruction the appropriate val-
ues of the static features. Besides this, we run the
programs for completion with different inputs and
measure the execution frequency and branch prob-
ability. Based on this information we label the ex-
ecuted branches with their most chosen direction.

LCalder reported for the SPEC92 benchmark suite and
other programs 20% compared to 25% by heuristics.
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Figure 1: Miss rate for profile of SPEC 2000

The decision trees are built with C4.5 [6], a widely
used tool for constructing decision trees and also
used in [3]. C4.5 constructs a decision tree with
respect to minimize the static prediction error and
therefore it does not take into account the execution
frequency of the branches. Of course, we consider
this number of dynamic executions in the reported
prediction accuracies, 17.4% for ESP.

We extent the model of ESP by adding some
more features that are available at compile time.
These additional features include looplevel, basic
block size, register used in branch instruction and
dependency distance (in number of instructions)
between register producing instruction and actual
branch. Again, we build a decision tree model for
data based on the extended features set and mea-
sure the miss rate for a general profile of SPEC
2000 programs. The result is shown if Figure [?].
Our improved model has a miss rate of 11.6%com-
pared to 9.3% miss rate of the perfect static branch
predictor. Although the extended model uses more
features and therefore makes it easier to diversify
between different branch structures, this new pre-
diction model will not automatically achieve higher
prediction accuracies. Remember that the tree
model is built for assigning the mostly taken di-
rection to each branch and not for optimizing the
dynamic prediction accuracy.

Although existing dynamic branch prediction
schemes achieve lower miss rates (down to 5%) than
even the perfect static branch predictor, these ac-
curate static predictions can serve as alternative for
some dynamic predictions, resulting in less mispre-
dictions.



1\"\«

44 —e—gshare

gshare + ESP

2 + —#—gshare + our model
gshare + perfect

Misprediction Rate (%)
(2]

1024 2048 4096 8192

Predictor Size (bytes)

256 512 16384

Figure 2: Gshare predictor with static prediction
for weak states

4 ... for weak dynamic predic-
tions

A gshare predictor bases its prediction on the state
of a (mostly) 2-bit saturating counter. For this
branch predictor, we observe that predictions cor-
responding with a counter value that is in a weak
state (e.g., 1 and 2 for a 2-bit counter), the branch
behaviour closer reflects the perfect static predic-
tion than its dynamic prediction. As thus we mea-
sure the effect of replacing these weak dynamic pre-
dictions by a static prediction.

The results are shown in Figure 2 for different
gshare predictor sizes. Beside the original gshare,
three extensions are shown according to the differ-
ent, static prediction possibilities discussed in the
previous section. We see that our model is very
close to the perfect static prediction and that for
a 256-byte gshare with our combination the miss
rate is reduced to 9.4% compared to 10% for ESP.
The effect of replacing weak predictions by static
predictions seriously diminishes as larger predictor
sizes are considered.

5 Conclusion

By extending the static feature set of ESP, we fur-
ther reduce the static branch prediction miss rate of
17.4% for ESP towards 11.6% (SPEC 2000). This
is close to the limit for perfect static branch predic-
tion that reaches a miss rate of 9.3%. These highly
accurate static predictions can serve as prediction

for weak dynamic predictions. For small predictor
sizes this results in significant lower miss rates.
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