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1 Introduction

As the memory subsystem typically accounts for over 50% of the power con-
sumption, optimizing the global memory accesses of an application is crucial for
achieving low power realizations. This is especially true for multi-media systems
such as medical image processing and video compression algorithms, which typi-
cally manipulate large multi-dimensional arrays resulting in a very large amount
of data storage and transfers. Improving the global memory accesses generally
also has a positive influence on the performance because it reduces the (external)
bus traffic and it improves the cache hit rates.

The Data Transfer and Storage Exploration (DTSE) methodology aims to
solve this global optimization problem. The methodology is split into several
substeps combined in two groups: platform independent and platform depen-
dent, steps. The platform independent steps transform the program indepen-
dently of the parameters of the memory (data storage) target platform, which
is, in effect, chosen or constructed based on the results of these steps and subse-
quently used to further optimize the program in the platform dependent steps.
The global loop transformation step is one of the platform independent steps
that aims to optimize global data transfer and storage by increasing the access
regularity and locality of the program. This step uses a polyhedral model and
is itself composed of two substeps: linear transformation and translation.

2 Program model

The programs we consider consist of a number of statements, each enclosed in
a (possibly zero-dimensional) loop nest and possibly guarded by conditionals
(if-statements), with all the loop bounds and conditions affine expressions of
outer loop iterators and structural parameters. The iteration domains, i.e., the
sets of iterators for which each statement is executed, can then be represented
by (unions of) polytopes (convex sets bounded by hyperplanes). In this repre-
sentation, each dimension corresponds to a loop iterator.

To optimize the memory usage of a program, we need to investigate the
relation between the accesses to memory in the statements of the program. We
say that iteration 7 of statement B depends on iteration 7’ of statement A if
they both access the same array element and if the former is executed after
the latter. We distinguish four kinds of dependences: input (read, read), flow
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or true (write, read), anti (write, read) and output (write, write). We also
say that a pair of dependent statements exhibit reuse [5], more specifically,
temporal reuse. It is called self reuse if the two statements are the same, i.e.,
the statement depends on a previous iteration of the same statement, and group
reuse otherwise. Spatial reuse (either self or group) exists when two statements
access array elements that are close to each other, i.e., elements that are likely
to be in the same cache line or memory page.

The dependence relation & of a pair of statements combines all individual
dependences between iterations of the two statements. If the index expressions,
mapping iterator values to array indices, are affine in the enclosing loop iterators,
then the dependence relation can also be represented by a polytope. During the
translation step, we use a simpler abstraction known as the dependence polytope
D. Tt is the convex hull of the dependence (distance) vectors between two
statements, where a dependence vector is the difference in loop iterators of two
depending iterations. I.e., D = conv{j—7|(7,7) € §}. Next to statements that
directly depend on each other, we also consider statements that depend on each
other through a dependence chain, which results in an indirect dependence.

3 Our approach

We perform loop transformations by transforming each statement iteration poly-
tope by an affine function in two steps. In the first step, we determine the linear
part of the affine transformation and in the second step the offset.

The second step is currently mainly focused on group locality [3]. By de-
creasing the distance over a dependence, we increase the chance of finding the
array element in a memory hierarchy level closer to the processor during the
second access. Decreasing the distance between the first and the final reference
to an array element also reduces the lifetime of the element which may result
in a reduction in final memory requirement for the array. Other optimization
criteria during the second step are related to the estimates of the final physi-
cal memory hierarchy mapping, namely the memory requirements for multiple
simultaneously alive arrays and data reuse considerations. To ensure legality
of the transformation, the final distance vectors need to be lexicographically
positive. In practice, this means we only need to consider the lexicographically
minimal element of the dependence polytope, rather than the whole set.

Since the linear transformation precedes the translation step, it needs to
ensure a valid choice still exists. A sufficient condition is that the (possibly
indirect) distance vectors over a circuit are lexicographically positive after the
linear transformation. This in turn can be translated into conditions on the
dependence relations, which are changed as a result of the transformation. Here
too, we need not consider the dependence relations themselves as the informa-
tion available in their affine hulls is sufficient. As to optimality, we concentrate
on the locality of self dependences and the regularity of group dependences [4].
The locality of self dependences can be optimized by selecting a linear transfor-
mation for the statement involved that places the self reuse in the inner loop(s).
Regularity is a property that increases with the decrease in variance between
the individual distance vectors and can be measured by the dimension of the
dependence polytope. Regularity can be optimized by selecting a pair of linear
transformations for the statements involved in the dependence that optimizes



this dimension. If not all irregularity can be removed, we attempt to place it
in the innermost loop(s). By optimizing regularity, we increase the opportunity
of the next step to optimize group locality. In the future, other criteria related
to the estimated mapping cost on the final physical memory hierarchy (such as
data reuse info) may have to be introduced here too. Experiments will have to
verify this.

The translation step has been implemented as a SUIF1 compiler pass. We
are currently refining the linear transformation step and we plan to implement
it as well. This will allow us to further investigate the relation between the
optimization criteria in order to improve our algorithms such that they do not
produce a single solution, but rather expose the trade-offs involved among the
factors, e.g., memory size and number of accesses, that contribute to the overall
power consumption. These trade-offs can then be used in subsequent steps to
select or construct the target platform.

4 Related work

Many researchers have used some form of affine-by-statement scheduling, in-
cluding Darte and Robert, Feautrier and Lim and Lam. They mainly focused
on parallelism, although recently locality has also been considered [2]. They do
not investigate trade-offs between the different optimization criteria discussed
above, and typically perform the affine transformation in a single step. By
splitting into two steps we hope to reduce the complexity of the transformation.
In this sense, our approach is similar to that of Kelly and Pugh [1], who also
provide a search tree of legal transformation in which to search for an optimal
solution. The main difference with their approach is that they construct the
affine transformation row by row. Our second step is a combination of loop
fusion and loop shifting, which has also been investigated by Manjikian and
Abdelrahman, Fraboulet et al., Song et al. and Darte and Huard.
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