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ABSTRACT 
The Software-Defined Radio (SDR) concept aims to enabling cost-
effective multi-mode baseband solutions for wireless terminals. 
However, the growing complexity of new communication standards 
applying, e.g., multi-antenna transmission techniques, together with 
the reduced energy budget, is challenging SDR architectures. Coarse-
Grained Array (CGA) processors are strong candidates to undertake 
both high performance and low power. 
The design of a candidate hybrid CGA-SIMD processor for an SDR 
baseband platform is presented. The processor, designed in TSMC 
90G process according to a dual-VT standard-cells flow, achieves a 
clock frequency of 400MHz in worst case conditions and consumes 
maximally 310mW active and 25mW leakage power (typical 
conditions) when delivering up to 25,6GOPS (16-bit).  The mapping 
of a 20MHz 2x2 MIMO-OFDM transmit and receive baseband 
functionality is detailed as an application case study, achieving 
100Mbps+ throughput with an average consumption of 220mW. 
 
1. INTRODUCTION 

Wireless technology is considered as a key enabler of many 
future consumer products and services. To cover the extensive 
range of applications, future handhelds will need to 
concurrently support a wide variety of wireless 
communication standards. The growing number of air 
interfaces to be supported makes traditional implementations 
based on the integration of multiple specific radios and 
baseband ICs cost-ineffective and claims for more flexible 
solutions. Software Defined Radios (SDR), where the 
baseband processing is deployed on a programmable or 
reconfigurable hardware, has been introduced as the ultimate 
way to achieve flexibility and cost-efficiency [1]. 

Several SDR platforms have already been proposed in 
academia and industry [1,2,3]. Most of these platforms 
support the execution of current wireless standards such as 
WCDMA (UMTS), IEEE 802.11b/g, IEEE 802.16. However, 
a key challenge still resides in the instantiation of such 
programmable architectures capable to cope with the 10x 
increase both in complexity and in throughput required by 
emerging standards relying on multi-carrier and multi-antenna 
processing (IEEE 802.11n, LTE), still being cost effective. 
Leveraging on the sole technology scaling is not sufficient 
anymore to sustain the complexity increase. In order to 
achieve the required high performance at an energy budget 
acceptable for handheld integration (~300mW), architectures 
must be revisited keeping in mind the key characteristics of 
wireless baseband processing: high data level parallelism 
(DLP) and data flow dominance. 

In nowadays SDR platforms, Very Long Instruction Word 
(VLIW) processors with SIMD (Single Instruction – Multiple 
Data) functional units are often considered to exploit the data 
level parallelism with limited instruction fetching overhead 
[2,3]. In other approaches, data flow dominance is sometime 
exploited in coarse-grained reconfigurable arrays (CGA) [4,5]. 
The first class of architectures have tighter limitations in 
achievable throughput for a given clock frequency while the 
seconds have as main disadvantage to require very low level 
programming. 

In this paper, we present the design, based on the 
ADRES/DRESC framework [6], of a hybrid CGA-SIMD SDR 
processor fully programmable from C-language. The core of 
the processor is made of 16 densely interconnected 64-bit 4-
way SIMD functional units with global and distributed register 
files. The CGA is associated with a 4-bank data scratchpad 
(L1) and provides an AMBA2 interfaces for configuration and 
data exchange. Besides, three functional units, operating as 
VLIW and sharing the global register file, can execute C-
compiled non-kernel code fetched through a 32K 128-bit wide 
instruction cache. When in array mode, C-compiled DSP 
kernels are executed while keeping configurations in local 
memories (one context per scheduled loop cycle) that are 
configured through direct memory access (DMA). The 
DRESC framework is used to transparently compile a single C 
language source code to both the VLIW and the CGA 
machines. 

We focus on the design and the implementation of the 
aforementioned processor in TSMC 90nm technology and 
demonstrate its utilization as baseband engine for a 20MHz 
2x2 MIMO-OFDM modem as in IEEE802.11n applications. 
In section 2, the principal architecture level characteristics are 
reviewed, both at the processor and at the core level. In 
section 3, the design methodology and results are presented. 
Importantly, the selection of process and standard-cells library 
options is discussed as well as the approach followed to 
minimize the processor power consumption. The goal is to 
achieve a minimum total energy per task, assuming that the 
processor will be embedded in a platform providing power 
management and standby leakage control support [7]. The 
processor performance and power consumption when 
executing MIMO-OFDM baseband processing are discussed 
in section IV. Conclusions are drawn in section V. 
 



 
Fig. 1 Processor Top level Architecture 

 
2. ARCHITECTURE 
A. Processor architecture 

The processor is designed to serve mainly as slave in multi-
core SDR platforms [7]. The top level block diagram is 
depicted in Figure 1. The processor has an asynchronous reset, 
a single external system clock and a half-speed (AMBA) bus 
clock. Instruction and data flow are separated (Harvard 
architecture). A direct-mapped instruction cache (I$) is 
implemented with a dedicated 128-bit wide instruction 
memory interface. Data is fetched from an internal 4-bank 1-
port-per-bank 16Kx32-bit scratchpad (L1) with 5-channel 
crossbar and transparent bank access contention logic and 
queuing. The L1 is accessible from external through an 
AMBA2-compatible slave bus interface. The CGA 
configuration memories and special registers are also mapped 
to the AMBA bus interface via a 32-bit internal bus. After 
reset and as soon as the external stall signal is de-asserted, the 
processor start fetching VLIW instruction, resulting in a series 
of cache misses leading to the load of the I$. 
Besides, the processor has a level-sensitive control interface 
with configurable external endianness and AHB priority 
settings (settable priority between core and bus interface to 
access L1), exception signaling, external stall and resume 
input signals. Because of the large state, CGA-based 
processors are typically non-interruptible. The external stall 
and resume signals provide however an interface to work as a 
slave in a multi-processor platform. The first is used to stop 
the processor while maintaining the state (e.g. to implement 
flow control at SOC level). Internally, a special stop 
instruction can be issued that sets the processor in an internal 
sleep state, from which it can recover at assertion of the 
resume signal. The data scratchpad and special register bank 
stay accessible through the AHB interface in sleep mode  
Finally, for the sake of prototyping, a dedicated data debug 
interface is implemented in the current design. 

B. Core architecture 
The core-level architecture is depicted in Figure 2. The 

CGA module is further detailed in Figure 3. The core is 
mainly made of a Global Control Unit (CGU), 3 predicated 
VLIW Functional Units (FU), the CGA module and a 6-
read/3-write ports 64x64-bit Central Data and 64x1-bit 
Predicate Register File (CDRF/CPRF). 

 
Fig. 2 Processor core Architecture 

 
VLIW and CGA operate the CDRF/CPRF in mutual 

exclusion and hence its ports are multiplexed. This shared 
register file naturally enables the communication between the 
VLIW and the CGA working modes. The two modes often 
need to exchange data as the CGA executes data-flow 
dominated loops while the rest of the code is executed by the 
VLIW.  

The CGA is made of 16 interconnected units from which 3 
have a two-read/one-write port to the global data and predicate 
register files. The others have a local 2-read/1-write register 
file. This local registers are less power hungry than the shared 
one due to their reduced size and number of ports. The 
execution of the CGA is controlled by a small size ultra wide 
configuration memory. The latter extends the instruction 
buffer approach, so common in VLIW architectures, to the 
CGA. On this way the CGA instruction fetching power is 
importantly reduced.  

 

 
Fig. 3 CGA unit interconnection 

 
 
 



TABLE 1 

INSTRUCTION SETS 

Op  Group Instuction Semantic # 
FUs 

WW 
[bits]

Delay 
[cycles]

add, add_u dst = src1 + src2 Arith sub, sub_u  dst = src1 - src2 0-15 1 
or dst = src1 or src2  
nor dst = src1 nor src2 
and dst = src1 and src2 
nand dst = src1 nand src2 
xor dst = src1 xor src2 

Logic 

xnor dst = src1 xnor src2 

0-15 1 

lsl dst = src1 << src2 Shift lsr, asr dst = src1 >> src2 0-15 1 
eq dst = src1 == src2 
ne dst = src1 != src2 
gt, gt_u dst = src1 > src2 (signed, unsigned) 

Comp lt, lt_u 
ge, ge_u 
le, le_u 

dst = src1 < src2 (signed, unsigned) 
dst = src1 => src2 (signed, unsigned) 
dst = src1 =< src2 (signed, unsigned) 

0-15 1 

Pred 

pred_clear 
pred_set, 
pred_eq 
pred_ne 
pred_lt, pred_lt_u 
pred_le, pred_le_u 
Pred_gt, pred_gt_u 
Pred_ge, pred_ge_u 

dst = 0 
dst = 1 
dst = (scr1 == src2) 
dst = (scr1 != src2) 
dst = (scr1 < src2) (signed, unsigned) 
dst = (scr1 =< src2) (signed, unsigned) 
dst = (scr1 > src2) (signed, unsigned) 
dst = (scr1 => src2) (signed, unsigned) 

0-15  

Mul mul, mul_u dst = src1 * src2 (32-bit) 0-15 2 

Branch 
jmp 
jmpl 
br 
brl 

PC = src2 
PC = src2; R9 = PC + Y 
PC = PC + X +imm<<2 
PC = PC + X + imm<<2; R9=PC+Y 

0 3 

Ldmem 

lu_uc 
ld_u 
ld_uc2 
lc_c2 
ld_i 

dst = zext8-32(mem8[Rsrc1+src2]) 
dst = sext8-32(mem8[Rsrc1+src2]) 
dst = zext16-32(mem16[Rsrc1+src2]); dst = zext16-32(mem16[Rsrc1+imm<<1]) 
dst = sext16-32(mem16[Rsrc1+src2]); dst = sext16-32(mem16[Rsrc1+imm<<1]) 
dst = mem32[Rsrc1+Rsrc2) ; mem32[Rsrc1+imm<<1] 

0-3 5/7 

Stmem 
st_c 
st_c2 
st_i 

mem8[Rsrc1+imm] = Rsrc30-8 
mem16[Rsrc1+imm<<1] = Rsrc30-15 
mem32[Rsrc1+imm<<2] = Rsrc3 

0-3 

32 

1 

cga Execute loop in CGA mode  
Control halt Drop to sleep mode ; waiting for resume signal - - - 

c4add dst = | src1a + src2a | src1b + src2b | src1c + src2c | src1d + src2d | 
c4sub dst = | src1a - src2a | src1b - src2b | src1c - src2c | src1d - src2d | 
c4shiftR dst = | src1a >> src2 | src1b >> src2 | src1c >> src2 | src1d >> src2 | SIMD1 
c4shiftL dst = | src1a << src2 | src1b << src2 | src1c << src2 | src1d << src2 | 

0-15 1 

d4prod dst = | src1a * src2a | src1b * src2b | src1c * src2c | src1d * src2d | SIMD2 c4prod dst = | src1a * src2b | src1b * src2a | src1c * src2d | src1d * src2c | 0-15 

64 

3 
Div div dst = src1 / src2 0-1 24 8 

 
 

VLIW and CGA functional units have 64-bit data-paths. 
The supported functionality is distributed over several 
different instruction groups. Table 1 lists the different groups 
detailing some of the instructions comprised, the functional 
units that implement such a group (see Fig. 3), the bit-width of 
the operated word and the group execution latency in cycles. It 
must be noticed that the basic instruction group (arith, logic, 
shift, comp, pred, mul, branch) operates only on the 32 LSB 
(Least Significant Bits) of the datapaths and registers. 
Similarly, load/store instructions assume 32-bit physical 
storage. Hence, 64-bit registers contents can only be 
loaded/stored with two instructions. Only the special 
instructions (group SIMD1, SIMD2), which are the hottest in 
utilization, operate in 64-bit according to a 4x16-bit SIMD 
alignment. Finally, the architecture also includes 2 hardwared 
dividers which operate on the 24 LSB. 
 

3.  IMPLEMENTATION 
A. Process and library selection 

The architecture described above is implemented to reach 
400MHz clock rate in worst-case condition when 
implemented in 90nm technology. Hence it delivers up to 16 
units x 4 way SIMD x 400MHz = 25.6GOPS (16-bit) as 
foreseen to be sufficient to implement 2x2 20MHz MIMO-
OFDM at 100Mbps+ [8]. To achieve such a clock frequency 
at maximum energy efficiency, TSMC90G process has been 
selected. Although it is leakier, the 90G process has better 
power-delay product that the 90LP process usually considered 
for embedded application. Leakage in operation mode is 
tackled with multi-VT design and, in standby, with third-party 
substrate biased standard cell library and memory macros. 

 
 



The current design is done with multiple VT standard cell 
libraries with substrate-biasing support and single port register 
file and SRAM macros. Multi-ported register files are 
synthesized from RTL descriptions. 

B. Power-aware Design and Verification Methodology  
The micro-architecture implementation started with the 

RTL description of the architectural components.  To 
minimize active power, we focused on clock gating. The RTL 
descriptions of the functional units and multi-ported register 
files have been written in such a way that automated fine-
grained clock gating was enabled during synthesis. 
Furthermore, operand isolation was manually implemented in 
the functional units to avoid the toggling of unused operators.  

The RTL was validated by means of simulating the 
execution of a functional regression test suite. The RTL 
execution is compared with a STRL reference model. All 
instructions, including all SIMD instructions, were covered 
with specific test loops. The overall operation was tested with 
the execution of a MIMO-OFDM baseband program covering 
both basic instruction set and SIMD instructions. 
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Fig. 4 Processor layout and main building blocks 

 
The RTL was then synthesized with Synopsys Design 

CompilerTM without wire-load model but with 20% timing 
over-constraint. Physical synthesis tools such as Synopsys 
Physical CompilerTM have been excluded because not 
leading to significant area or power benefit compared to the 
proposed strategy. This results from the dominance of the 
timing constraint. The drawback is that the timing can only be 
reported after place & route. Clock gating is inserted and 
optimized during synthesis. 95% of the flip-flops turn out to 
be clock-gated with the appropriate activation signal. Finally, 
scan test support and memory BIST logic were inserted.  

The resulting netlist was simulated at gate level with the 
same regression suite, plus specific testbench for scan test and 

BIST behavior validation. Then, it was used as input for 
physical design with Cadence SOC EncounterTM. Macros are 
placed at the periphery as illustrated in Figure 4. Standard 
cells placement is then optimized, followed by clock tree 
synthesis and final place & route. After parasitic extraction 
from the resulting layout, timing and power estimation was 
carried out. Timing was checked with Synopsys 
PrimeTimeTM. Power in VLIW and CGA mode was 
estimated with Synopsys PrimePowerTM based on switching 
activity traced during gate-level simulation. 

C. Design Results 
The final layout achieves a timing of <2.5 ns in worst case 

conditions, which makes the operation of the processor at 
400MHz possible. The critical path is located in the execution 
stage of the functional units implementing the pipelined 
multiplier. The die area reaches 5.79 mm2 including L1, I$ 
and configuration memories. The silicon occupation in the 
standard cells area reaches 60% (9-layer back end). The area 
breakdown is given in Figure 5. One can observe that the 
memories occupy roughly 50% of the area. The CGA 
functional units take 29%, followed by the VLIW units (8%) 
and the global and distributed registerfile (5% and 3%).  
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Fig. 5 Processor Area Breakdown 

 
4.  PERFORMANCE AND POWER ANALYSIS 

In order to evaluate the processor performance and power 
consumption in its targeted operation conditions, the execution 
of a MIMO-OFDM inner modem was profiled. Table 2 
presents compilation and profiling data on the kernels of both 
the preamble processing and the data processing. Notice that 
the whole program is written in ANSI-C and compiled with 
the DRESC framework. To exploit the 4-way SIMD 
capabilities, intrinsic functions were introduced in the C code. 
In total, the preamble processing takes 15,3us, which is higher 
than the preamble elapsed time (8us). This introduces a 
latency of 7.3us but do not hamper the throughput. For packet 
data processing, loop merging is used so that two symbols are 
processed in parallel, resulting in a processing time of 3.8us 



per symbol, which is lower than the symbol elapsed time; 
hence, guaranteeing real-time processing of a packet.  

The processor executes the MIMO-OFDM running 
mostly in CGA mode: for the data processing about 60% of 
the time is spent in CGA mode, and for the preamble 
processing, it is about 72% of the time. For the different 
kernels, the main modes in which they are running are 
indicated in Table 2, as well as the IPC obtained by running 
the kernel in that mode. When a kernel is presented as running 
in CGA mode, this means that the computations are all 
performed in a loop that is mapped onto the ADRES CGA 
mode. Of course there is still some VLIW code present in 
those kernels. This VLIW code takes care of the stack frame 
setup and cleaning in the C procedures implementing the 
kernel, and of setting up the data for the CGA loop. Some 
kernels are divided over two loops, and in that case some 
VLIW code also glues the two CGA loops together. When a 
kernel is presented as being run in VLIW mode, no loops were 
present that can be mapped onto ADRES’s CGA mode. And 
in case the kernel is presented as “mixed”, this means that it 
contains a loop that is mapped to CGA mode, but that there is 
also a significant part of VLIW mode preprocessing or 
postprocessing going on in the kernel. 

On our ADRES core, the number of instructions executed 
per cycle (IPC) should be much higher in CGA mode, which 
has 16 functional units at its disposal for executing software-
pipelined loops, than in VLIW mode, which has only 3 issue 
slots available to execute largely sequential code. The IPC 
numbers in Table 2 confirm this. On average, CGA-mode 
kernels obtain an IPC of 10.31. So a utilization factor of 
10.32/16 = 64.5% is obtained in CGA mode. In pure VLIW 
mode code, the average IPC is 1.94, totalling a utilization of 
1.94/3 = 64.6%. While it is coincidental that these two 
utilization factors are so close together, the fact that they are in 
the same range demonstrates that our ADRES core is a well 
balanced mix of VLIW and CGA resources. 

The processor power consumption is estimated based on 
gate-level activity profile obtained from the gate-level 
simulated execution of the aforementioned program. Static 
and dynamic power consumptions are distinguished, as well as 
dynamic power in non-kernel (VLIW) mode and in kernel 
(CGA) mode. Results are depicted in Table 3. Power are given 
for typical design corner (V=1V, nominal process, T=25C). 
Leakage is extrapolated to typical leakage corner (V=1V, 
nominal process, T=65C). The average power when executing 
the reference program is 220mW. 

TABLE 3 
PROCESSOR POWER CONSUMPTION 

 Active  
(typical) 

Leakage 
(typical)  

Leakage 
(T=65C)  

VLIW 75 mW 12.5 mW 25 mW 
CGA 310 mW 12.5 mW 25 mW 

Average 220 mW 12.5 mW 25 mW 
 

TABLE 2 
PROFILING OF THE SDM-OFDM CODE 

    kernel mode IPC cycles
acorr mixed 3.47   122    
fshift CGA 12.16   211    
xcorr CGA 9.15   280    
acorr mixed 3.47   194    
fshift CGA 12.16   678    
fft CGA (2x) 10.36   712    
remove zero carriers VLIW 1.10   76    
freq offset estimation CGA 6.32   314    
freq offset compensation mixed 4.48   424    
sample ordering VLIW 1.61   210    
SDM processing CGA (2x) 9.90   1540    
sample reordering VLIW 2.69   256    
equalize coeff. calc. CGA 8.38   636    
non-kernel code VLIW 1.69   452    
total 8.05   6105    

 = 15.3 us

fshift CGA 13.33   378    
fft CGA (2x) 11.46   493    
data shuffle VLIW 2.60   100    
tracking VLIW 1.83   117    
comp CGA 9.00   219    
demod QAM64 CGA 12.04   224    
total 10.34   1531    

 = 3.8 us
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A further breakdown of the active power consumption 

identifies which parts of the design consume most. In both 
non-kernel and kernel mode, a significant share (respectively 
28% and 38%) goes to the interconnect sub-system which 
include buffers, multiplexers and pipeline registers between 
the CGA functional units. In non-kernel, 22% and 21% further 
go to the VLIW functional units and global register file 
respectively; 13% to the L1, 10% to the I$. The CGA units 
that are idle consume 2%. In kernel mode, after the 
interconnect, the CGA functional units, configuration 
memories and L1 dominates with respectively 25%, 13% and 
10% of the power. The global and distributed register files 
counts for 8% and 2%. The idle VLIW units and I$ consume a 
remaining 5%. 
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Fig. 6a Power consumption breakdown in VLIW mode  
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Fig. 6b Power consumption breakdown in CGA mode 

 
5. CONCLUSIONS 

The design of a hybrid CGA-SIMD baseband processor for 
SDR is presented. The processor, designed in TSMC 90G 
technology according to a dual-VT standard-cells flow, 
achieves a clock frequency of 400MHz in worst case 
conditions (corresponding to 25,6GOPS) and occupies 5.79 
mm2 including L1, I$ and configuration memories. Two 
operations modes are foreseen: non-kernel VLIW and kernel 
CGA mode. In non-kernel mode, active power consumption is 
estimated to 75.4mW while it reaches 310mW in CGA-
mapped loops. Static power consumption is 25mW at 65C, 
which can be reduced in standby thanks to the substrate-
biasing support of the considered standard-cells library. The 
processor is shown to be able to execute 20MHz 2x2 SDM-
OFDM baseband processing, achieving 100Mbps+ throughput, 
consuming 220 mW. 
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