
Mitigating Smart Card Fault Injection with
Link-Time Code Rewriting: A Feasibility Study

Jonas Maebe, Ronald De Keulenaer, Bjorn De Sutter, and Koen De Bosschere

Computer Systems Lab, Ghent University
{jmaebe,rdkeulen,brdsutte,kdb}@elis.ugent.be

Abstract. We present a feasibility study to protect smart card software
against fault-injection attacks by means of binary code rewriting. We
implemented a range of protection techniques in a link-time rewriter
and evaluate and discuss the obtained coverage, the associated overhead
and engineering effort, as well as its practical usability.

Keywords: smart card, fault injection, software protection, binary
rewriting.

1 Introduction

Cryptographic keys and PIN hashes are often embedded in bank smart cards.
To steal that data, attackers inject faults with power glitches, clock period al-
terations, temperature rises, active probing of buses, or light attacks [2]. The
faults cause bit flips to alter data values or program code. When this remains
undetected, security barriers risk being broken: private keys can leak [1], encryp-
tion rounds are skipped [4], buffers can overflow [2], and critical checks can be
skipped [8]. To protect software against such attacks, redundancy can be inserted
in the code to detect occurring faults. Ideally, some tool can apply generic forms
of low-overhead redundancy fully automatically to implement security policies
specified in a convenient form without impeding the programmer’s productivity.

Many redundancy schemes have been proposed in the past to protect soft-
ware against soft errors [14] and to prevent control flow from deviating from
predetermined paths [13]. However, all automated techniques that try to limit
the performance overhead of the introduced redundancy is implemented in tools
that do not cooperate well with other compilers.

In practice, companies rely on multiple in-house and third-party development
tool chains that may change over time. To maintain interoperability with differ-
ent tool chains and avoid vendor lock-in, tools that automate the implementation
of security policies should therefore be separate tools that do not break existing
tool chains and do not depend on their internal operation. This leaves two basic
options to insert redundancy: source code rewriting and binary code rewriting.

Source-to-source rewriters essentially insert redundancy in the source code
by duplicating statements. They suffer from major drawbacks. First, optimizing
compilers risk undoing the protection by eliminating the redundancy they detect
in the source code. Secondly, as security is a problem that concerns many ab-
straction and implementation layers, many security policies involve lower-level

A.-R. Sadeghi (Ed.): FC 2013, LNCS 7859, pp. 221–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

222 J. Maebe et al.

aspects that are hard to control in source code when the used compilers are black
boxes. Thirdly, source-to-source rewriters are by definition language-dependent
and hence need to be redeveloped for every programming language. Finally,
white and black box security testing typically takes place on the final binary
code. Communication between testing teams and protection tool developers is
much harder if the former are studying assembly code generated by some black-
box compiler while the latter are working on source code.

Binary code rewriters do not suffer from these problems. They do suffer, how-
ever, from the fact that they have to operate on binary code that lacks symbolic
information. This limits the precision and scope of many program analyses and
transformations, which affects the provided level of protection and the overhead.

This paper presents a feasibility study of link-time binary code rewriting to
protect against fault-injection attacks. We argue why such an approach is feasi-
ble. We evaluate the coverage and overhead of link-time code rewriting that
implements certain security policies. The policies we examine are cookbook
recipes [10] for local hardening of code against certain classes of single-instruction
failures, i.e., single instructions that are skipped as the result of an injected fault.

We know of no automated fault-injection protection tools in use today for
smart card software.We believe that the need to provide this protection manually
is the main reason why manual assembly programming is still so common. By
providing convincing arguments for the feasibility of automating this protection
in a tool that does not disrupt proprietary compiler-based tool flows, we hope to
contribute a significant step towards more productive smart card programming.

2 Link-Time Software Protection against Fault Injection

Around the turn of the century, link-time rewriters were presented for perfor-
mance optimization [12] and code compaction [6]. Today, compilers like gcc and
LLVM also include so-called link-time optimizations. Those operate on the com-
piler’s intermediate representation, however, not on binary code. These compilers
therefore do not meet the practical requirements set forward in the introduction.

By contrast, Diablo (http://diablo.elis.ugent.be) is a true link-time rewriting
framework [15]. Its flexibility, versatility, extensibility, retargetability, portabil-
ity, and reliability have been demonstrated extensively in the past, which make
it a promising candidate tool for the automated protection of binary code. In
short, Diablo has been used to develop tools that rewrite code for a range of
goals including optimization, compaction, (de-)obfuscation, anti-tampering, for-
mal verification, instrumentation, GUI executable editing, and OS customiza-
tion. These tools have been applied to binaries from different source languages,
including C, C++, assembler, and Fortran. Several of those tools have been ap-
plied to binaries generated by different compiler generations covering 10 years
of proprietary as well as open-source compilers (incl. ARM ADS, ARM RVCT,
and gcc). Finally, the Diablo framework has been used to rewrite the Linux
kernel for both ARM and x86. This kernel features artifacts such as code for
physical and virtual address spaces, privileged instructions, manually written

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting 223

assembler not adhering to the conventions as specified in application binary in-
terfaces (ABIs), and a complicated, non-standard build process. For an overview
of all Diablo-related research results, we refer to the Diablo website.

Together, these demonstrations show that link-time rewriters can meet the
requirements discussed before: they can cooperate reliably with black box, third-
party tool chains and code libraries. It is, however, not clear a priori that a tool
like Diablo can deliver acceptable protection at acceptable overhead, with an
acceptable engineering effort. Link-time tools are designed to depend only on in-
formation available in object files, such as symbol and relocation information [9].
This enables them to handle code generated by open-source as well as closed,
proprietary compilers. However, this also limits their capabilities.

First, they lack high-level semantic information about the code to be rewrit-
ten. For example, no type information is available, which makes alias analysis
much less precise [11]. Consequently, link-time rewriters typically need to handle
memory by and large as a black box. Rather than performing register allocation
globally, like compilers do, they need to find free registers locally to store tem-
porary values. In case they cannot find them, the values have to be spilled to
the stack. Applying this spilling locally in a link-time rewriter introduces con-
siderably more overhead. Secondly, at link time indirect control flow transfers
of which binary code analysis cannot resolve the targets precisely have to be
modeled conservatively, i.e., over-approximated, on the basis of relocation infor-
mation [5]. Through additional edges that model the over-approximation, the
control flow graph (CFG) then models a superset of all possible program execu-
tions. This is safe, but leads to a loss in analysis precision. It is mainly because
of these limitations that a feasibility study like this one is needed.

For this feasibility study, we implemented three first-line-of-defense cook-
book protection schemes that provide local hardening against certain single-
instruction failure attacks [10]. We implemented these in a tool on top of the
Diablo framework for the ARM Cortex-M0 instruction set architecture (ISA),
which is used in the ARM smart card SecurCore SC000 processors [16] that
target future smart card applications. In these protection schemes, the program
executes some “invalid state exception” code when a fault is detected. In our
prototype, we opted for an infinite loop to prevent the export of any secret data.

ldr r0,[r1]
cmp r0,#5
beq .success
<failure handling code>

.success:
<sensitive code>

Fig. 1. Original code

Conditional Branch Duplication. Sensitive code
paths are often shielded by checks that, e.g., verify
whether a correct password was entered. On smart
card processors like the ARM SecurCore SC000, these
checks correspond to conditional branches in the bi-
nary code. The branches are taken or not depending
on flags in a status register, that can either be set us-
ing an explicit comparison instruction or implicitly according to the result of an
ALU operation. Attacks can focus on the input values used to perform the op-
eration that sets the flags, on that operation itself, or on the conditional branch
that depends on the flag.

224 J. Maebe et al.

To protect against attacks that make the checks ineffective by skipping one
of these instructions, we duplicate the computation of the flags and the con-
ditional branch. A typical scenario targeted by this transformation is depicted
in Figure 1, which is then transformed into the code of Figure 2. The shown
transformation defends against all avenues of attack mentioned above: The in-
put value is protected by duplicating the defining instruction, the flag setting is
covered by duplicating the comparison, and branching based on the flag values
is covered by duplicating the conditional branch.

ldr r0,[r1]
cmp r0,#5
beq .dup1
<failure handling code>

.dup1:
ldr r0,[r1]
cmp r0,#5
beq .success
<invalid state exception>

.Success: <sensitive code>

Fig. 2. Protected code

More complex variations of the code shown in Fig-
ure 1 can occur. First, there may be multiple, different
definitions of the input value(s) of the comparison in
different predecessors of the comparison’s basic block.
In that case the duplication of the definition can be
skipped, which weakens the protection because of re-
duced redundancy, or a significant amount of code
needs to be duplicated through so-called tail dupli-
cation [11] even before the actual redundancy can be
inserted. So far, we implemented only the former in our prototype. Secondly,
sometimes we cannot simply duplicate the instruction defining the value to be
compared because its source operands are no longer available. This is the case,
e.g., when the defining instruction is a load like ldr r0, [r0]. In that case, we
need to find a free register to store a copy of the original source operands, and
use that register in the duplicate. When no free registers are found, they are
created by inserting spill code. Apart from spilling data register to the stack to
free them for use in the duplicated code, it can also be necessary to spill the
status register when flags are used beyond the conditional branch. This adds
overhead. Finally, when the flags are set by an ALU operation that overwrites a
source operand with a new value, we also needs to find a free register.

Caller:
...
mov r4,#id
blx Callee
...

Callee:
cmp r4,#id
beq .success
<invalid state exception>
...

.success:
<sensitive code>

Fig. 3. ID Passing & checking

Call Graph Integrity. Security analyses per-
formed on a program’s call graph are only as trust-
worthy as the guarantee that only modeled calls
or returns can occur. By injecting bogus call or re-
turn addresses into the execution of a program, it
is possible to invalidate any call graph constructed
statically. Our integrity transformation works at a
local level: at each individual call and return site a
value is set to be checked at the intended destina-
tion. At every function entry and at every return,
we then verify that control indeed came from one of the allowed points. This is
less strong than a protection that verifies entire call chains, but it can be easily
applied to call graphs with hard to analyze constructs such as recursion.

Since our transformation is applied at link time, supporting indirect function
calls through function pointers or polymorphic method invocations requires extra
care. Lacking type information, link-time rewriters typically cannot determine
the exact targets of an indirect call. This is solved by clustering all functions that

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting 225

may be called indirectly (according to the symbol and relocation information
found in the object files) and treating them as a single function as far as this
transformation is concerned. While this makes the protection less tight, it allows
dealing statically with uncertainties introduced by dynamic program behavior.

Figure 3 shows how each check consists of two parts. Before every call a
register or global variable is set to the unique identifier id of the callee (or
cluster of callees). Next, instructions inserted in each function’s prologue verify
whether the set value matches its identifier (or that of its cluster). Similarly,
before every return instruction a register or global variable is set to another id.
This value is checked at the return points in the callers.

str r0,[r1]
ldr r2,[r1]
cmp r0, r2
beq .ok
<invalid state exception>

.ok:
...

Fig. 4. Store verification

The process starts by partitioning the program’s
functions into clusters whose members can call each
other indirectly or that can be called from the same
indirect call site. Next, the registers free on entry and
exit in all functions in a cluster are collected. If some
register is always free on entry, it will be used to pass
the value from the caller to the callee, otherwise the
value is passed via a global variable. The same happens at the function exits.

Memory Store Verification. The failure of a store operation at run time
generally means that program state is lost. This can be addressed by checking
that the store actually took place and that the correct value was written to
memory. Such a transformation also introduces some resiliency to memory errors.

The proper execution of a store can be verified by loading the stored value
back from memory and verifying that it matches the value that should have been
stored. This happens with a comparison, as depicted in Figure 4. This transfor-
mation requires an extra free register to reload the stored value. Additionally,
the status flags must be available since we insert a comparison. We do not have
to duplicate the comparison in order to be safe from a single-instruction failure
attack, since such an attack corrupts either the store or the comparison, but
not both. Multiple attacks can be dealt with by duplicating the inserted code as
many times as the number of attacks that should be handled.

Besides discussing the transformations we implemented support for, it is useful
to discuss the engineering effort we invested in Diablo’s core infrastructure. This
demonstrates that we can build on existing infrastructure in link-time rewriters
to solve technical issues of automated protection, rather than having to adapt
their fundamental concepts or having to implement ad-hoc solutions.

First, inserting redundancy involves static as well as dynamic code dupli-
cation: In Figure 2, the load occurs twice in the code statically and it will
be executed twice dynamically. For memory-mapped IO, this is problematic:
Memory-mapped IO operations should obviously not be duplicated dynamically.
So on architectures like ARM, our tool faces the problem to differentiate between
normal memory operations and memory-mapped IO operations. To solve this,
the software developer has to provide our tool with a list of IO register mem-
ory addresses. Diablo constant propagation analysis [11] detects instructions
that access constant memory addresses. When such instructions are detected

226 J. Maebe et al.

that access IO registers, we have those instructions marked as memory-mapped
IO to prevent the protecting transformations from duplicating them. This re-
quired no changes at all to Diablo’s basic infrastructure. In practice, it works
because memory-mapped IO is typically programmed with hard-coded constant
addresses, for example through macros in the source code, for which the de-
tection based on constant propagation works well. In theory, it is possible to
write an application for which this solution will not work (and for which no fully
automated solution will work, due to the undecidability of the aliasing problem).

int some_routine(void){
...
return some_value;
check_unreachable();

}

Fig. 5. Unreachable code

Secondly, like all compilers, Diablo iteratively
applies analyses and transformations. To simplify
their implementation, most of them make some as-
sumptions about the state of the IR. In Diablo, many
analyses and transformations assume that the CFG
contains no unconnected nodes. To guarantee this, an
unreachable code elimination pass [11] is run before almost all analyses.

This is problematic when a programmer wrote code that is unreachable under
normal, fault-free conditions as in Figure 5, but that was added for security
reasons. By default, Diablo eliminates the call to check unreachable. To avoid
this we adapted Diablo’s basic infrastructure to keep track of the program points
where it deleted unreachable code. The user of our tool can provide exception
handling code, which our tool will then insert at those points before writing out
the code. This provides a simple mechanism to compensate for eliminated code.

3 Experimental Evaluation

Table 1. Benchmarks (code size in bytes)

benchmark domain nr size
full benchmarks for semi-hosted simulation
basicmath small floating-point s1 19480
bitcnts integer bitcounting s2 8204
qsort large 3D point sorting s3 14824
qsort small string sorting s4 8012
susan image processing s5 32172
aes crypto s6 37092
sha crypto s7 7296
stripped-down benchmarks for native execution
basicmath small floating-point n1 12928
bitcnts integer bitcounting n2 3124
aes (encoder only) crypto n3 3760
sha crypto n4 1592

To evaluated our protections, we
compiled and protected seven C
MiBench [7] benchmarks (see Ta-
ble 1) for a semi-hosted simulation
environment (QEMU 1.0 [3]) with
which we verified correctness, but
on which no accurate performance
can be measured. We refer to these
benchmark versions as s1–s7. We used
the ARM RVCT 4.1 compiler for
ARM Cortex-M0 platforms with -O2.
This compiler is a centerpiece of Keil
(http://www.keil.com/smartcards), a
tool box often used in industrial smart
card software development. Next, we ported four benchmarks to a USB device
with an ARM Cortex-M3 with 32 kB of flash ROM and 8 kB of SRAM. This
memory was too small for all benchmarks, so this limits our evaluation on real
hardware to the four stripped-down benchmarks in Table 1. We will refer to
these four natively executed, stripped-down programs as n1–n4. All binaries are
linked statically, such that they include all needed RVCT 4.1 C library code.
Whereas developers of real smart card applications would apply protections to

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting 227

!"#
$!"#
%!"#
&!"#
'!"#
(!!"#

)(
#

)$
#

)*
#

)%
#

)+
#

)&
#

),
#

-(
#

-$
#

-*
#

-%
#

./012342#
567#389:;0/723#
<89:;0/723#

!=
#

!>
#

!"
#

!#
#

!$
#

!%
#

!&
#

'=
#

'>
#

'"
#

'#
#

()*+,*-#">./01#

()*+,*-#21)*3#

!"
#

!#
#

!$
#

!%
#

!&
#

!'
#

!(
#

)"
#

)#
#

)$
#

)%
#

*+,-.,/#!0)12,34)#-25!3,6#
7,10!3,6#-+,-.,/#

(a) conditional branches (b) memory stores (c) call graph integrity

Fig. 6. Coverage results

4?#
84?#
54?#
@4?#
A4?#
644?#
684?#
654?#

96# 98# 9B# 95# 9:# 9@# 9C# !"# !## !B# !$#

%&!'()&!/*#+,/!-./0# 12&,/#-./-30#
%/**#4,/5.#(!2/4,(26# 7**#

Fig. 7. Code size overhead

!"#$#

#$#

"#$#

%#$#

&#$#

'#$#

()# ("# (*# (%#

Fig. 8. Performance overhead

only the sensitive parts of the applications, there is no notion of sensitivity in
our benchmarks. They serve the purpose of estimating the potential overhead of
our protections, so we made our tool apply them to the whole programs (with
the exception of back edges for the conditional branch duplication).

Figure 6(a) shows the fraction of all conditional branches that get protected,
together with the instructions setting the condition flags and, if available in the
branch’s basic block, the instruction defining the operand of that instruction.
From all conditional branches, 97% on average and at least 92% per benchmark
can be protected with our current implementation. As for the small fraction
of branches not being duplicated, this was mainly the result of not finding the
flag-setting instruction in the branch’s basic block. Figure 6(b) shows that our
prototype was able to insert checks for 100% of the stores. We differentiate be-
tween 32-bit and other stores because the latter require an additional instruction
to mask the 32 bits of which 16 or 8 are stored. The bars in Figure 6(c) show
the fractions of all call sites and return points of at which the call graph in-
tegrity is checked. The first bar depicts the number of points checked with a
strong check, i.e., for which the callee is in a singleton cluster. The second bar
depicts the number of points at which the identifier is passed in a register for
minimal overhead, not in a global variable. A relatively large number of all calls
involves clustered functions, for which we can typically not find a free register.
The clustering mainly happens for C-library’s use of function pointer tables.

Figure 7 depicts the code size overhead of our transformations. The combined
overhead varies between 25–115%. The main reason why the combined protection
overhead is bigger than the sum of the isolated overheads is that Diablo’s liveness
analysis becomes less precise after transformations have been applied. Another
reason is that as the programs grow bigger, the corresponding ever larger branch
offsets can no longer be encoded in single 16-bit Thumb2 instructions. Compared

228 J. Maebe et al.

to the size overhead, the performance overhead depicted in Fig. 8 for the bench-
marks for which we could conduct precise measurements is relatively small. We
should remind the reader that we blindly applied the protections to the whole
benchmarks, which inflates the overhead. In reality, smart card developers will
likely limit them to the sensitive parts of their applications.

4 Conclusions

From previously demonstrated capabilities to reliably cooperate with black-box,
third-party, industrial-strength proprietary compilers, combined with experi-
mental results obtained with our prototype tool, we conclude that automated
link-time fault-injection protection is a realistic, promising direction.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on RSA
with CRT: Concrete results and practical countermeasures. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s ap-
prentice guide to fault attacks. Cryptology ePrint Archive, Report 2004/100 (2004)

3. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proc. USENIX,
pp. 41–46 (2005)

4. Choukri, H., Tunstall, M.: Round reduction using faults. In: Proc. FDTC, pp.
13–24 (2005)

5. De Sutter, B., De Bus, B., De Bosschere, K.: Link-time binary rewriting techniques
for program compaction. ACM Trans. Prog. Lang. and Syst. 27(5), 882–945 (2005)

6. Debray, S.K., Evans, W., Muth, R., De Sutter, B.: Compiler techniques for code
compaction. ACM Trans. Prog. Lang. and Syst. 22(2), 378–415 (2000)

7. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.:
Mibench: A free, commercially representative embedded benchmark suite. In: Proc.
IEEE WWC-4, pp. 3–14 (2001)

8. Kim, C.H., Quisquater, J.-J.: Fault attacks for CRT based RSA: New attacks,
new results, and new countermeasures. In: Sauveron, D., Markantonakis, K., Bilas,
A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228. Springer,
Heidelberg (2007)

9. Levine, J.R.: Linkers and Loaders. Morgan Kaufmann Publishers Inc. (1999)
10. Markantonakis, C., Mayes, K., Tunstall, M., Sauveron, D., Piper, F.: Smart card

security. In: Nedjah, N., Abraham, A., de Macedo Mourelle, L. (eds.) Computa-
tional Intelligence in Information Assurance and Security. SCI, vol. 57, pp. 201–233.
Springer, Heidelberg (2007)

11. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997)

12. Muth, R., Debray, S.K., Watterson, S., De Bosschere, K.: Alto: a link-time opti-
mizer for the Compaq alpha. Softw. Pract. Exper. 31(1), 67–101 (2001)

Mitigating Smart Card Fault Injection with Link-Time Code Rewriting 229

13. Oh, N., Shirvani, P.P., McCluskey, E.J.: Control-flow checking by software signa-
tures. IEEE Trans. Reliability 51(1), 111–122 (2002)

14. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: Soft-
ware implemented fault tolerance. In: Proc. ACM CGO, pp. 243–254 (2005)

15. Van Put, L., Chanet, D., De Bus, B., De Sutter, B., De Bosschere, K.: DIABLO:
a reliable, retargetable and extensible link-time rewriting framework. In: Proc.
ISSPIT, pp. 7–12 (2005)

16. Yiu, J.: The Definitive Guide to the ARM Cortex-M0. Newnes (2011)

	Mitigating Smart Card Fault Injection with Link-Time Code Rewriting: A Feasibility Study
	Introduction
	Link-Time Software Protection against Fault Injection
	Experimental Evaluation
	Conclusions

