Pushing Java Type Obfuscation to the Limit

Christophe Foket, Bjorn De Sutter, Member, IEEE Computer Society,
and Koen De Bosschere, Member, IEEE Computer Society.

Abstract—Bytecoded .Net and Java programs reveal type infor-
mation through encoded type hierarchies, casts, field declarations
and method signatures. This facilitates bytecode verification, but
it also helps reverse engineers. To obfuscate the type information,
we combine three transformations. Class hierarchy flattening
removes as much of the type hierarchy from programs as possible.
Interface merging and object factory insertion further remove type
information from casts, method signatures, and object creation
sites. We evaluate these techniques with a prototype tool for Java
bytecode. On real-life programs from the DaCapo benchmark
suite, we demonstrate that our approach effectively hinders
human and tool analysis with limited overhead.

Index Terms—Java bytecode, obfuscation, class hierarchy, type
information, points-to sets, understandability, performance

I. INTRODUCTION

Reverse engineering and modification of managed bytecode
are well-understood and common practices, with many legiti-
mate goals [1]. Malicious developers can abuse them, however,
to attack Java and .NET applications with the goals of software
piracy, software IP theft, data theft, and malware injection.
Their attacks benefit from the fact that virtual machines require
symbolic information to execute the bytecode and to manage
the data. Type information constitutes an important part of
this, as it enables just-in-time compilation, garbage collection,
reflection and bytecode verification. At the same time, this
type information is also what makes managed code easier to
understand, reverse engineer, modify, reuse and steal.

Many obfuscation techniques have been proposed to harden
reverse engineering attacks. Some prevent automatic decompi-
lation [2], [3]. Some obfuscate data flow [4], [5] or control flow
[3], [4], [6], [71, [8], [9], [10], [11]. Others simply omit human-
readable, meaningful identifiers [2], [12]. Finally, a few have
proposed obfuscating the overall application design by altering
the application’s type hierarchy [13]. The latter obfuscations
aim for the opposite of classic code refactoring [14], [15].

We take design obfuscation one step further. Instead of
merely modifying an application’s type hierarchy, we propose
class hierarchy flattening (CHF) to get rid of it altogether. CHF
strives to maximally remove subtype relations, resulting in a
hierarchy in which classes are siblings rather than subtypes
and supertypes. To avoid that method signatures, casts, and
object creation sites still yield type information in flattened
code, we combine CHF with two additional transformations:
interface merging (IM) and object factory insertion (OFI).

All authors are with the Computer Systems Lab, Department of Electronics
and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000
Gent, Belgium. E-mail: {cfoket,bjorn.desutter,kdb} @elis.ugent.be.

The authors thank the Agency for Innovation by Science and Technology
in Flanders (IWT) for their support, and Ghent University, the Hercules
Foundation and the Flemish Government - department EWI for the STEVIN
Supercomputer Infrastructure on which we carried out part of this work.

The major contributions of this paper are the following.

e We present CHF. In combination with the two other
transformations it enables, CHF obfuscates much more
type information than existing obfuscations.

o We present effective methods and heuristics to limit the
overhead and to trade it for the level of protection.

o We present a tool flow for applying the transformations
on complex, real-world applications.

o We are the first to evaluate and report obfuscations of this
complexity on large, real-world applications.

e Our evaluation includes metrics related to human code
understanding as well as to automated static analysis tools
that help attackers reverse-engineer bytecode.

The remainder of this paper is structured as follows. Sec-
tion II illustrates the obfuscations on an example program.
Sections III, IV, and V discuss CHF, IM, and OFI respectively.
We evaluate them in Section VI and address their correctness
in Section VII. Related work is the topic of Section VIIL.
Section IX concludes and discusses future work.

II. RATIONALE: AN EXAMPLE PROGRAM

An example media player illustrates the issues we tackle. It
consists of three parts: the player initializer, support for media
files, and support for media streams in those files. Fig. 1 shows
the corresponding class hierarchy subtrees. Fig. 2(a) illustrates
their interaction. For the sake of clarity, we use meaningful
method and type identifiers. In a real obfuscated program, they
would of course be replaced by meaningless ones [2], [12].

The main method of class Player creates an array of Me-
diaFile objects to be played (I. 10). It then queries them for
their media streams (l. 12), which are initialized by accessing
the file with the readFile method. Fig. 2(a) shows this for the
MP3File class, which represents MP3 files containing MPEG
audio streams. During playback, the player checks the run-time
type of the MediaStream objects (1l. 13 & 15) to decide where
they need to be output. They are either cast to AudioStream
or VideoStream, such that the correct play method is invoked
(1. 14 & 16). The play methods essentially output the raw bytes
of the media streams to a specific output device. Those bytes
are obtained, decrypted (1l. 33-34) and decoded (1. 35) with
the getRawBytes method declared in MediaStream. Because
the decoding process is different for each type of stream, the
decode method is declared as abstract, and is implemented by
subclasses of MediaStream. The decryption process, on the
other hand, is the same for each type of media stream and is
therefore handled by the MediaStream class.

From a software-engineering perspective, the code is well
structured. The inheritance relations are meaningful and code
shared between different classes is located in a common

| Object |
Player MediaFile MediaStream
+ main(String[]) : void # filePath : String - data: byte[]
+ play(AudioStream) : void # mediaStreams : MediaStream|[] - KEY : byte[]
+ play(VideoStream) : void # readFile() : void # decode(byte[]) : byte[]
+ getStreams() : MediaStream(] + getRawBytes() : byte[] v\
MP3File MP4File AudioStream VideoStream

readFile() : void # readFile() : void

audioBuffer : int[] # videoBuffer : int[][]

Pt

decode(bytel[]) : byte]]
decodeSample() : byte[]

decode(byte[]) : byte[]
decodeFrame() : byte[]

oy

DTSStream

MPGAStream XvidStream

decodeSample() : byte[]

decodeSample() : byte[] # decodeFrame() : byte[]

Fig. 1: Standard UML representation of the class hierarchy of a simple DRM media player.

1 public class Player { 1 public class Player implements Common { 1 public class Player implements Common {
2 public void play(AudioStream as) { 2 public void play(Common as 2 public byte[] merged1(Common as) {
3 /*send as.getRawBytes() to audio device */ 3 /* send as.getRawBytes() to audio device */ 3 /*send as.getRawBytes() to audio device */
4 4 4}
5 E)ublic void play(VideoStream vs) { 5 Lublic void playl(Common vs) { 5 public Common[] merged2(Common vs) {
6 /*send vs.getRawBytes() to video device */ 6 /* send vs.getRawBytes() to video device */ 6 /*send vs.getRawBytes() to video device */
7} 7} 7
8 public static void main(String[] args) { 8 public static void main(String[] args) { 8 public static void main(String[] args) {
9 Player player = new PIayer?); 9 Common player = new Player(); 9 Common player = CommonFactory.create(...);
10 MediaFile[] mediaFiles = ...; 10 Common[] mediaFiles = ...; 10 Common[] mediaFiles = ...;
11 for (MediaFile mf : mediaFiles) 11 for (Common mf : mediaFiles) 11 for (Common mf : mediaFiles)
12 for (MediaStream ms : mf.getStreams()) 12 for (Common ms : mf.getStreams()) 12 for (Common ms : mf.getStreams())
13 if (ms instanceof AudioStream) 13 if (myCheck.isInst(0, ms.getClass())) 13 if (myCheck.isInst(0, ms.getClass()))
14 player.play((AudioStream)ms); 14 player.play(ms); 14 player.merged1(ms);
15 else if (ms instanceof VideoStream) 15 else if (myCheck.isInst(1, ms.getClass())) 15 else if (myCheck.isInst(1, ms.getClass()))
16 player.play((VideoStream)ms); 16 player.play1l{ms) 16 player.merged2(ms);
17 17 17
18}

19 public class MP3File extends MediaFile {

18}
19 public class MP3File implements Common {

18}
19 public class MP3File implements Common {

20 protected void readFile() { 20 public void readFile() { 20 public byte[] mergedi() {

21 InputStream inputStream = ...; 21 InputStream inputStream = ...; 21 InputStream inputStream = ...;

22 byte[] data = new byte][...]; 22 byte[] data = new byte][...]; 22 byte[] data = new byte][...];

23 inputStream.read(data); 23 inputStream.read(data); 23 inputStream.read(data);

24 AudioStream as = new MPGAStream(data); 24 Common as = new MPGAStream(data) 24 Common as = CommonFactory.create(...);
25 mediaStreams = new MediaStream[]{as}; 25 mediaStreams = new Common(]{as}; 25 mediaStreams = new Common[]{as};

26 return; 26 return; 26 return data;

27 27 27

28} 28} 28}

29 public abstract class MediaStream {

29 public class MediaStream implements Common {

29 public class MediaStream implements Common {

30 public static final byte[] KEY = ...; 30 public static final byte[] KEY = ...; 30 public static final byte[] KEY = ...;

31 public byte[] getRawBytes() { 31 public byte[] getRawBytes() { 31 public byte[] getRawBytes() {

32 byte[] decrypted = new byte[data.length]; 32 byte[] decrypted = new byte[data.length]; 32 byte[] decrypted = new byte[data.length];
33 for (inti = 0; i < data.length; i++) 33 for (inti=0; i< data.length; i++) 33 for (inti=0; i< data.length; i++)

34 decrypted|i] = datali] » KEY[i]; 34 decrypted|i] = data[i] » KEY[i]; 34 decrypted][i] = data[i] » KEY[i];

35 return decode(decrypted); 35 return decode(decrypted); 35 return decode(decrypted);

36 36 36 }

37 i)rotected abstract byte[] decode(byte[] data); 37 g} ublic byte[] decode(byte[] data){ ... } 37 public byte[] decode(byte[] data){ ... }

38} 38} 38}

(a) original code

(b) partially obfuscated type information

(c) fully obfuscated type information

Fig. 2: Partial implementations of the Player, MediaStream and MP3File classes. Transformed code is underlined.

superclass. While we could have factored out casts and run-
time type checks, we did not do so for didactic purposes.

From a security perspective, there are some issues. First,
the hierarchy informs attackers about the abstraction levels
of the classes’ functionalities. Classes higher in the hierarchy
typically provide more abstract functionality. Secondly, code
reuse through inheritance enables attacks in which compromis-
ing one class can compromise all of its subclasses. All me-
dia streams are decrypted with MediaStream.getRawBytes().
When an attacker reverse-engineers this method, he can de-
crypt all supported media stream types. Finally, we observe
that even though local variables are untyped in bytecode, the
code still reveals type information through method signatures,
casts, and object creation sites. For example, the allocation of
a Player on 1. 9 allows a type inference tool [16] to narrow the
type of the player variable to Player. The instanceof checks and
casts on 1l. 13-16 also restrict the possible types to which the

variable ms can point. This abundance of type information
is important for an attacker because it simplifies his mental
understanding and his tools’ formal models of the code. In
compiler terminology, it reduces points-to set sizes and it
simplifies the call graph by omitting unrealizable edges [17].
These issues can be solved by rewriting the well-structured
hierarchy into the unstructured collection of Fig. 3. To deter-
mine how classes are related, an attacker can then no longer
rely on a hierarchy. He instead has to analyze all classes.
Furthermore, as all classes are provided with a (diversified)
copy of all fields and methods declared in their former
superclasses, they have become independent. Code is no longer
shared between related classes, so one can no longer attack
many classes at once by patching their common superclass.
Code analysis has also become harder. Fig. 2(c) displays
much less type information than the original code. All decla-
rations declare type Common, all invoked methods are imple-

«interface » Common

[+ decode(byte[]) :byte] | > __ _ _ _ _ _ _ _ __ _____ !

| e - - - - + getRawBytes():byte] [_ _ _ _ _ _ _ __ 1 |

| | I - + merged1(Common) : byte[] | | |

: : : : + merged2(Common) : Common[] —: : : :

| | | | A A | | | |

| 1 | 1 T | 1 | 1

| XvidStream | AudioStream | VideoStream | MPGAStream | DTSStream

Il - videoBuffer : int[l[] Il # audioBuffer : int[] I # videoBuffer : int[][] | audioBuffer : int[] I[- audioBuffer : int[]

|| - data: byte[] I| - data: byte[] I| - data: byte[] | data : byte][] | data : byte[]

I| - KEY : byte[] I|- KEY : byte[] I| - KEY : byte[] I| - KEY : bytel[] I| - KEY : byte[]

I[¥ decode(byte[]) : byte[] I+ decode(byte[]) : byte[] I+ decode(byte[]) : byte[] I+ decode(byte[]) : byte[] I+ decode(byte[]) : byte[]

I+ getRawBytes() : byte[] Il+ getRawBytes() : byte[] I+ getRawBytes() : byte[] I+ getRawBytes() : byte[] I+ getRawBytes() : byte[]

I+ merged1(Common) : byte[] I +d merged1(Common) : byte[] I+ merged1(Common) : byte[] I+ merged1(Common) : byte[] I merged1(Common) : byte[]
: +d merged2(Common) : Common(] : +d merged2(Common) : Common(] ! +d merged2(Common) : Common(] : +d merged2(Common) : Common(] ! +d merged2(Common) : Common(]

MP3File MediaFile MediaStream MP4File Player
filePath : String filePath : String data : byte[] filePath : String + main(String[]) : void
mediaStreams : Common(] mediaStreams : Common(] KEY : byte[] mediaStreams : Common(] +d decode(byte[]) : byte[]

decode(bytel]) : byte[] +d
getRawBytes() : byte[] +

merged1(Common) : byte[] +d
merged2(Common) : Common(] | | +d

decode(byte[]) : byte[] +d
getRawBytes() : byte[] +d
+ merged1(Common) : byte[] +d
+ merged2(Common) : Common[] | | +

decode(byte[]) : byte[]
getRawBytes() : byte[]
merged1(Common) : byte[] +
merged2(Common) : Common([] | | +

getRawBytes() : byte[]
merged1(Common) : byte[]
merged2(Common) : Common(]

+d
+d

decode(byte[]) : byte[]
getRawBytes() : byte[] v
merged1(Common) : byte[] v
merged2(Common) : Common(]

Fig. 3: Obfuscated class hierarchy of the media player.

mented by all classes, and all casts are gone. An obfuscated,
typeless isInstance method replaces instanceof, and factories
returning Common replace type-specific allocations. These
factories can be obfuscated internally, such that static analysis
cannot determine the precise type of the returned objects. As
a result, call graph construction [18], points-to analyses [17]
and type inference [16] will yield less precise results.

Furthermore, as all classes now implement the whole Com-
mon interface, many of them now implement more methods.
For example, in the obfuscated program all classes implement
merged1, which replaces play, decodeSample, decodeFrame,
and readFile. An attacker’s static analysis cannot determine
that of all ten implementations of merged1, only six will actu-
ally be executed. In AudioStream, VideoStream, MediaStream
and MediaFile, the merged1 methods are dummies (marked
with the non-standard d in Fig. 3) that can be filled with
arbitrary code to complicate static analysis even further.

In the next sections, we discuss the stepwise code obfus-
cation. CHF (Sect. III) first replaces the type hierarchy by
a flat collection of classes. In doing so, CHF introduces a
single interface for each subtree of the original class hierarchy.
Because of the different interfaces, the flattened program then
still encodes a considerable amount of type information. With
IM (Sect. IV), we merge separate interfaces into a common
one. Method signatures then feature less diverse types and
many casts can be removed. This leads to a reduction in type
information and enables OFI (Sect. V) to further remove type
information from object allocation sites for optimal protection.

ITI. CLASS HIERARCHY FLATTENING

The goal of CHF is to remove as many subtype relations
from a class hierarchy as possible. For example, in our media
player MP3File and MP4File should no longer inherit from
MediaFile. In practice, however, not all subtype relations can
be removed. Any class hierarchy transformation is constrained
by type correctness requirements imposed by external libraries
that cannot be transformed, and by uses of reflection that
cannot be easily transformed. CHF therefore proceeds in
six steps. First, subtrees from a class hierarchy are selected
that can be flattened. In five following steps, all necessary
transformations are performed to flatten the selected subtrees.

A. Subtree selection

Assume that an application consists of a set of application
classes A that use or extend classes from a self-contained set
of library classes L that includes java.lang.Object. Classes in IL
are never considered for transformation. L usually corresponds
to the standard library; A contains all classes that make up
the actual application. Let ¢5,t* : (AUL) — (AUL)* be the
functions that map a class 2 onto the sets ¢5(z) and ¢*(x) of all
x’s (transitive) subclasses and superclasses, resp., x included.

As we cannot rewrite external library classes, we cannot
change their position in the hierarchy, nor can we adapt their
method signatures. To maintain type correctness, this implies
that any application class a in t4(I) with [€ L needs to
stay a subclass of /. This is similar to limitations imposed
on other refactorings. Those limitations have been formalized
in literature [15], so we do not repeat them here. Furthermore,
CHEF is not applicable to a subset of classes X C A because
changing those classes’ position in the hierarchy could alter
the program behavior. This includes classes on which the
program might (depending on the input) perform reflective
operations such as getinterfaces() (which can make the pro-
gram dependent on the number of interfaces implemented by a
class), getSuperclass(), isAssignableFrom(), getMethod(), etc.
There can also be practical reasons for not flattening some
classes. Our prototype tool presented in Sect. VI considers
classes of which multiple different or identical definitions exist
on the class path as non-transformable, as well as classes
that implement java.lang.Throwable. The latter are usually
exception classes. Implementing tool support for these types of
classes would require a major engineering effort and not buy
much in terms of obfuscation, so our tool simply adds them to
X as non-transformable. All classes in X and their subclasses
face similar limitations as those in L. and their subclasses.

So we partition A into set T of transformable classes and
set X of non-transformable classes. T is further partitioned
into disjoint subtrees 7; according to the following four rules:

DT=U,_y .. Ti) Vi: T, cA\X
S)VZ,] TZOTJZQ 4)VC€T1tS(C)CT1
They express that each subtree 7; consists of a unique set of

transformable classes such that if 7} includes a class c, it also
includes all of its subclasses. Fig. 4 depicts the selection of

Fig. 5: Flattened class hierarchy subtrees.

four subtrees in a hierarchy with an external library class L and
a non-transformable application class X. In the media player
of Fig. 1, the three subtrees of java.lang.Object are selected.
In steps B—F each subtree will be further transformed into
a flat set of classes that become direct subclasses of the direct
superclass of the tree’s root. For each flat set of classes, we
insert an interface they implement. Fig. 5 shows the result with
four new interfaces for the original class hierarchy of Fig. 4.

B. Preparing subtrees for flattening

We prepare subtrees in three steps. First, we encapsulate
instance fields in subtree classes with getters and setters, and
replace field accesses by calls to those getters and setters. This
provides access to instance fields in the subtree classes, even
though interfaces cannot declare instance fields. Secondly, we
make each class functionally independent of its superclasses.
We traverse each subtree T; breadth-first. For each class ¢ € T;
and each direct subclass d of ¢ we first copy the instance
fields and concrete instance methods from ¢ to d, renaming
them if necessary to avoid collisions with original fields and
methods of d. For constructors, which cannot be renamed, we
avoid collisions by adding artificial, distinguishing parameters.
We then rewrite field references and super calls in d and
d’s subclasses such that they reference d’s copies. References
from outside d and its subclasses need not be rewritten.
First, external field references have already been replaced
by getters and setters. Secondly, when a method needs to
be renamed or needs to get a distinguishing parameter to
avoid a signature collision, this implies that shadowing already
prevented external references to the original method in c.

C. Interface insertion

For each subtree we create a new supertype interface, and
insert it into the directory or archive that contains the root
class of the subtree. The interface declares all instance methods
of all classes in the subtree and is implemented by all its
classes. Whenever an original class does not implement all

1 public class Player implements Common1 {
2 public void play(Common3 as) { ... }

3 public void playl(Common3 vs) { ...}

4 public static void main(String[] args) {

5 Commonl player = new Player();

6 Common2[] mediaFiles = ...;

7 for (Common2 mf : mediaFiles)

8 for (Common3 ms : mf.getStreams())

9 if (ms instanceof AudioStream)
10 player.play(ms);
11 else if (ms instanceof VideoStream)
12 player.playl(ms);
13 '}
14}

Fig. 6: Intermediate obfuscated Player class.

the required methods of the interface, dummy methods are
added. Since these were not present in the original program,
and as we are not changing the behavior of the program, they
will never be executed. We can therefore provide nonsensical
implementations for them so as to confuse static analyses.

For the media player, we create three interfaces: Common1,
Common2, and Common3, corresponding to the subtrees
rooted at Player, MediaFile, and MediaStream.

D. Subtree type abstraction

Next, we make the program independent of the subclass
relations that we will remove in the next step. We replace
all references to types in T by their corresponding interface
supertypes. This comes down to replacing the types of local
variables, fields, array creations, and the types used in method
signatures. The only time we still refer to the actual classes in
the subtree is for object creation and dynamic type checks.
Fig. 6 shows a partially obfuscated version of the Player
class. Various declarations have been replaced by the three
supertypes Common1, Common2, and Common3, but new and
instanceof expressions have not yet been replaced.

This abstraction operation sometimes requires method re-
naming. The two play methods in Fig. 2(a) had different
parameter types, but they have identical types in Fig. 6. So
one of them is renamed into play1 to differentiate them.

As for cast operations, many of them can be omitted because
they have become superfluous after interfaces replaced con-
crete types in declarations. Not to reveal any type information,
we also want to omit the remaining ones. So we replace
them by code that tests a type with instanceof and throws
a ClassCastException whenever a run-time cast would have
failed in the original program. To minimize the number of
types that need to be tested and hence revealed in the code,
we perform a points-to analysis on the original program [19],
[20]. This treatment of casts is similar to that in other code
refactoring techniques that change type hierarchies [15].

We should also note that at some program points, the
transformation requires us to add casts. This happens whenever
an object is passed to a library function as a parameter. In
Fig. 4, consider a method void mO(L x) of library class L. In
the original program, the following sequence is valid: Lo = ...;
A a=..;0.m0(a); After rewriting the declarations, we have to
insert a cast: Lo =...; 11 a=...;0.m0((L)a); This cast is needed
for type correctness, but does not provide attackers additional
type information, as the type in the cast was already present
in the library method’s signature anyway.

Such casts cannot be used for arrays, however. For the
same hierarchy and a library method sort(L[] x), we cannot
rewrite C[] ¢ = new C[1]; c[0] = new D(); sort(c); into 12[] c
= new I2[1]; c[0] = new D(); sort((L[])c); because the dynamic
cast in the rewritten code will throw a ClassCastException.
Likewise, we cannot rewrite G[] g = new H[1]; g[0] = new J();
into 14[] g = new I4[1]; g[0] = new J(); The former throws an
ArrayStoreException; the latter does not.

Point-to set information for call sites of external methods
and for array store operations allow us to identify the pro-
gram points where these exceptions will never be thrown in
the original and in the rewritten program. At the remaining
program points, the exceptions may potentially be thrown in
the original but not in the rewritten program or vice versa
if the type relation between the involved arrays and objects
changes because of flattening. To prevent this from happening,
it suffices to treat a class as non-transformable if an array of
that class occurs in a points-to set at such a program point.

E. Subtree flattening

We can now remove the class inheritance relations within
the subtrees. Traversing each subtree T; breadth-first, for each
class ¢ € T; and each direct subclass d of ¢ we first make
d implement the same interfaces as ¢, to preserve assign
compatibility between variables and fields of the interface
types and objects of type d. Next, we make them siblings
by setting d’s superclass to c’s.

Except for dynamic type checks, the program now no longer
depends on the subtype relations between classes.

F. Converting instanceof

The behavior of run-time type checks inserted by the
programmer as casts or in step D, depends on the structure of
the class hierarchy. Before flattening the subtrees of Fig. 1, the
expression ms instanceof AudioStream on line 13 of Fig. 2(a)
evaluated to true for ms pointing to objects of either type
DTSStream or MPGAStream. In the flattened subtree, however,
it evaluates to false for objects of those types.

To preserve the program semantics, we replace all occur-
rences of instanceof by table lookups. The table encodes at
least those original subtype relations necessary to preserve the
behavior of the instanceof occurrences. Each row in the table
initially corresponds to one of the expressions o; instanceof A;
in the original program. The columns correspond to the classes
in the points-to sets computed for all o;. For the media player,
Table I represents the initial table. In real programs, the table
will be much bigger. To mitigate analysis by attackers, the
table can be inflated by adding additional classes as columns
and by adding rows for dummy instanceof operations injected
into the dummy methods inserted in step B.

As most of the classes will typically not occur in all points-
to sets of all instanceof occurrences, a considerable number of
elements in the table will be “don’t care” (DC) values. As is
done in the optimization of multi-output boolean functions for
optimizing circuits [21], we can freely choose between true or
false, to replace each DC. In our case, we want to minimize
the amount of useful type information in the table. Consider,

for example, the MPGAStream and DTSStream classes. The
similarity between their columns in Table I indicates that they
originate from the same subtree. To hide this from attackers
analyzing an inflated table, we can instantiate their DC values
in a way that makes the classes’ cast behavior look different.
Alternatively, we can make, e.g., XvidStream and Player,
which are not related at all, look related by choosing their DC
values such that their behavior becomes identical. Likewise,
we can merge the last two, different occurrences of instanceof
by choosing their DCs appropriately. This way, originally
completely unrelated cast operations look as if they cast related
types. In short, by choosing the DC values in the possibly
inflated table, we can again reduce its size and make unrelated
classes and casts look related and vice versa. Furthermore,
we can use hashing and white-box crypto techniques [22] to
prevent static analysis of the table and involved code.

Each expression o; instanceof A; is then replaced by a call
myCheck.isInst(r; ;,0;.getClass()) where r; ; is the (possibly
encrypted or hashed) row index of the lookup table entry that
corresponds to the given instanceof expression. Lines 13 and
15 of Fig. 2(b) show the results for the media player.

IV. INTERFACE MERGING

In the code in Fig. 6 much type information can still be
inferred from declarations and method signatures. This will
lead to small points-to sets and more precise analyses. Addi-
tionally, an attacker can determine which classes belonged to
the same subtrees in the original program based on the subtype
relations between classes and interfaces.

To limit the amount of available type information, we can
merge multiple unrelated interfaces into a single one. For the
media player example, the interfaces Common1, Common2
and Common3 can be merged into an interface Common that
declares all their methods. The result is shown in Fig. 7 and
Fig. 2(b). To complete the classes’ interface implementation, it
is again necessary to add dummy methods. This can result in
considerable code size overhead. For example, methods play
and play1 are now implemented by all classes, while they were
originally only implemented by the Player class.

To enable developers to trade off the number of interfaces
merged for the incurred overhead, we merge interfaces in
several steps. First, we partition the subtree interfaces into
mergeable sets of a tunable size n. Smaller sets will result in
merged interfaces with fewer methods, and hence less dummy
methods and less overhead. In the second step, each set is
merged into a single interface. In the remaining steps, methods
are selected and merged to minimize the overhead.

A. Interface partitioning

Besides limiting the overhead, there is another reason for
which we cannot merge all interfaces into a single super
interface. IM, like CHF, is limited by restrictions imposed
by custom class loaders. For example, merging interfaces
from different archives can result in linkage errors or class
resolution errors from custom class loaders. We therefore limit
IM to sets of interfaces of which the subtrees originate from
within the same archives. The merged interface can then be

packaged in that same archive, such that custom class loaders
can find them precisely when and where they need them.

First, we partition all subtree interfaces according to the
archives that contain them. Next, each set of interfaces is
further partitioned using a first-fit decreasing bin packing strat-
egy [23] that considers the number of classes in a subtree as the
size of the corresponding interface. This groups interfaces and
their subtrees into a minimal number of bins smaller than or
equal to a selected size n. When the interfaces in a bin are later
merged, the merged interface will therefore be implemented by
at most n classes. For small enough values of n, the resulting
packing over similarly sized bins distributes the points-to set
sizes in the transformed program evenly.

B. Interface merging

Given a partitioning of all subtree interfaces into n merge-
able sets Iy, ..., I,. For each set I;

1) Create a new interface k that declares all methods

declared in all ¢ € I;.
2) Add k to the archive that contains the interfaces in I;.
3) For each class c in the application, replace all references
to i € I; by references to k. If ¢ implements an interface
1 € I;, make ¢ implement k and add dummy methods
to ¢ to complete the implementation of k.

4) Remove all interfaces in I; from the application.

Fig. 7 shows the resulting hierarchy, with the non-standard
d annotation denoting dummy methods. The total number of
dummy methods is 59, while there are only 21 non-dummy
methods. To limit the overhead of these dummy methods, we
merge dummy methods with non-dummy methods in the next
steps. In the context of this paper, merging a set of m methods
means giving the methods identical signatures and names such
that an interface only needs to declare one method instead of
m ones, and such that the classes implementing that interface
need to implement only one non-dummy method instead of
one non-dummy plus m — 1 dummy methods.

In the hierarchy of Fig. 7, we merge play, decodeSample,
decodeFrame, and readFile into merged1, and getStreams and
play1 into merged2, as shown in Fig. 3 and in Fig. 2(c) on
1. 2, 5, 20, and 26. Only 19 dummy methods remain.

Method merging (MM) involves merging parameter type
lists and return types. Some merged methods will have larger
parameter type lists, while some previously void methods now
return a value. These changes come at a cost. For instance,
for each extra parameter to a method and for each invocation
of the method an extra argument has to be passed. To limit
these costs and to ensure that program behavior is preserved,
MM proceeds in two steps. First, we select sets of related
methods that can be merged. Next, we select increasingly more
expensive combinations of these sets and merge them greedily.

C. Method set selection

Changing the signature of a method requires making similar
changes to the signature of overridden and overriding meth-
ods [15]. The MM transformation therefore operates on sets
of methods instead of single methods. Each set consists of
methods that at all times should have the same signature. Let

o I be the set of subtree interfaces after CHF or IM, M the
set of all methods, and C = A U LL the set of all classes.

e M :Cw— M, with M(c) all methods declared in class c.

e S : M +— M" the function that returns the set of methods
S(m) that should have the same signature as m.

o f: M {false,true}, with f(m) indicating whether
the signature of m can be rewritten. When it cannot, e.g.,
because it is referenced via reflection, we can often wrap
it in a method of which the signature can be changed.

The method sets that can be merged are then given by S =
{S(m) | VieIVm e M(i) AN¥n € S(m). f(n)}.

We extend the notions of signature, return type, name, and
parameter type list from single methods to sets of methods
because each S € S is itself a set of same-signature methods.

D. Method set merging

Several constraints limit MM. For example, as a method can
only declare one return type, two methods with different non-
void return types cannot be merged. Furthermore, we must
prevent merging multiple methods with non-dummy imple-
mentations and hiding implementations of existing methods by
overriding them. While it may seem counter-intuitive that MM
in flattened hierarchies can result in methods being overridden,
Fig. 5 illustrates that not all subtrees in an application can
be flattened. Merging |l and I3 into | results in the hierarchy
of Fig. 8. In this hierarchy, dummy methods introduced by
merging have been omitted for clarity. The method sets of
I:m1 and I:m2 cannot be merged into I:m, because the resulting
merged methods E:m and F:m would erroneously hide B:m.

To verify whether or not methods can be merged, we will
check for reaching implementations in the merged hierarchy.
A class ¢ has a reaching implementation of a method m if
c or one of its superclasses has an implementation for m.
In partially merged interfaces of Fig. 8, methods m1 and m2
could not be merged because classes E and F have a reaching
non-dummy implementation for both of them. Based on this
observation, we can formalize the merge condition: A collec-
tion of method sets can be merged iff all sets with a return type
other than void have the same non-void return type ¢, and there
is no class that has a reaching non-dummy implementation for
two or more methods from different method sets. Based on this
condition, we propose the following greedy MM algorithm:

while & = {{S;,S;} C S| {S;,S;} is mergeable} # ()

do
s = arg min C(s;)

5,66
5 = merge(s)
S=SuU{s}\s

end
In this algorithm, I is the set of merged interfaces obtained
after CHF or IM, and C : S* — RT is a cost function for
which C(s) gives the cost of merging all sets in s as a result
of the increase in arguments and the change in return type. The
merge subroutine does the actual merging as follows. Given a
set s = {.5;,5;} C S that adheres to the merge condition

1) Compute signature s =< r,n,p > for merged methods.
2) Create an empty set 5 that will hold the merged methods.

Xvid- | Audio- | Video- | MPGA-| DTS- | MP3-| Media- | Media- | MP4-
Stream | Stream | Stream | Stream | Stream | File | File |Stream| File |Player

ms instanceof AudioStream | false DC DC true true DC DC DC DC DC

ms instanceof VideoStream true DC DC false false | DC DC DC DC DC

mf instanceof MediaFile DC DC DC DC DC true DC DC true | false

TABLE I: instanceof lookup table
«interface» Common K}f-———"-"-""-"-"-""-————-———————— ——— o
| + decode(byte[]) :byte[] @ [N T T T T T T ——————— 1 |
+ decodeFrame(): byte] [<f————————————— 1					
	+ decodeSample(): byte]] [""" ——				
	+ getRawBytes() : byte[] -				
	+ play(Common) : void				
	+ play1(Common) : void				
I I + readFile() : void I I I I :					
	+ getStreams() : Common(]			I	
: XvidStream I AudioStream A VideoStream : MPGAStream : DTSStream					
videoBuffer : int[][]	# audioBuffer : int[] I [# videoBuffer : int[][]	audioBuffer : int[]	audioBuffer : int[]		
data : byte[]	- data : byte[] I'	- data: byte[] - data : byte[]	data : byte[]		
KEY : byte[] i KEY : byte[] I'	- KEY : bytef] s KEY : byte[]	KEY : byte[]			
	+ decode(bytel]) : byte[]		+ decode(byte[]) : byte][] : + decode(bytel]) : byte[]		+ decode(bytel]) : byte[]
[+ decodeFrame() : byte[]		+d decodeFrame() : byte[]		+d decodeFrame() : byte[]	
[+d decodeSample() : byte[]	[+d decodeSample() : byte[]		+d decodeSample() : byte[]		+ decodeSample() : byte[] I
	+ getRawBytes() : byte[] I	+ getRawBytes() : byte[]		+ getRawBytes() : byte[] I	+ getRawBytes() : byte[] I+ getRawBytes() : bytel[]
I [+d play(Common) : void I [+d play(Common) : void | | +d play(Common) : void I'[+d play(Common) : void I +d play(Common) : void
I'| +d play1(Common) : void || +d play1(Common) : void | [+d play1(Common) : void I'|+d play1(Common) : void | +d play1(Common) : void
I'| +d readFile() : void I+ readFile() : void | | +d readFile() : void I'|+d readFile() : void : +d readFile() : void
: +d getStreams() : Common([] : +d getStreams() : Common[] | | [+d getStreams() : Common(] : +d getStreams() : Common([] | +d getStreams() : Common([]
1
MP3File MediaFile MediaStream MP4File Player

- filePath : String - filePath : String data : byte[] - filePath : String + main(String[]) : void
- mediaStreams : Common[] - mediaStreams : Common[] - KEY : byte[] - mediaStreams : Common[] +d We[]
+d decode(bytel]) : byte[] +d decode(bytel[]) : byte[] +d decode(bytel]) : byte[] +d decode(bytel]) : byte[] +d decodeFrame() : byte[]
+d decodeFrame() : byte[] +d decodeFrame() : byte[] +d decodeFrame() : byte[] +d decodeFrame() : byte[] +d decodeSample() : byte[]
+d decodeSample() : byte[] +d decodeSample() : byte[] +d decodeSample() : byte[] +d decodeSample() : byte[] +d getRawBytes() : byte][]
+d getRawBytes() : byte[] +d getRawBytes() : byte[] + getRawBytes() : byte[] +d getRawBytes() : byte[] + play(Common) : void
+d play(Common) : void +d play(Common) : void +d play(Common) : void +d play(Common) : void + play1(Common) : void
+d play1(Common) : void +d play1(Common) : void +d play1(Common) : void +d play1(Common) : void +d readFile() : void
+ readFile() : void +d readFile() : void +d readFile() : void + readFile() : void +d getStreams() : Commonl[]
+ getStreams() : Common([] + getStreams() : Common([] +d getStreams() : Common([] + getStreams() : Common([]

Fig. 7: Class hierarchy of the flattened media player before method merging.

Fig. 8: Class hierarchy after merging lo and Is.

3) Compute for each class ¢ the set N(c) of methods to
merge: N(c) ={m € M(c) | 3S; € s A\m € Si}.
4) For all classes ¢ for which N(c) is not empty:
a)
b)

Create a new method m with signature s.

The body of m becomes the body of the single
non-dummy method in N(c) if there is one, or the
body of a random method in N(c) otherwise.
Rewrite invocations of methods in N(¢) to invoca-
tions of m, adding dummy arguments as needed.
d) Remove all methods in N(c) from c.

e) Add m to ¢ and to 5.

5) Return 5.

In step 4a) we compute s =< r,n,p > as follows. The
return type r is void if all method sets in s return void, else it
is the non-void type ¢ of the merge condition. The name n is
chosen as a unique random string. The parameter type list p is
chosen as a random permutation of the smallest unordered list

c)

of types that contains all parameter type lists of the method
sets in 5. For example, for two type lists [int, int] and [float], the
merged list can be [int, int, float] or any permutation thereof.

V. OBFUSCATING FACTORIES

Even after IM, some statements still expose type informa-
tion. For example, after the allocation on 1. 9 in Fig. 2(b),
player points to an object of type Player. From this in-
formation, points-to analyses deduce points-to sets of many
local variables. In turn, other attack analyses like call graph
construction, program slicing, and type inference will also
regain some precision. To prevent this, we replace allocations
by calls to object factories [24] that return multiple types of
objects. The effect of this object allocation obfuscation, when
not undone by an attacker, will be that no points-to analy-
sis, however complicated, will compute more precise results
than class hierarchy analysis [25]. To achieve this effect, the
transformation proceeds in two steps. First, we preprocess the
program to maximize the potency of the transformation. Next,
we replace object constructions by calls to object factories.

A. Code preprocessing

We want to replace allocations like Common player = new
Player() by calls to factories like Common player = MyFac-
tory.create(...). For maximal obfuscation, the factory would
return objects of all subtypes of java.lang.Object. However,

1 public void m1() { 1 public void m1() {
2 Xx1=new X(); 2 Lx1=LFactory.create(keyl);
3 x1.mO0(); 3 x1.mO();
4 Xx2=new X(); 4 Bx2 = BFactory.create(key?);
5 x2.m1(); 5 x2.m1();
6 lc=new C(); 6 |c=|Factory.create(key3);
7 c.m2(); 7 c.m2();
8 le=newE(); 8 | e =|Factory.create(key4);
9 e.ml(); 9 e.ml();
10} 10

(a) original code ; (b) code with factories

Fig. 9: Example of object factory insertion.

the return type of a factory must be type-compatible with the
variable or field to which the returned object is assigned. In
our example, MyFactory.create() has to return an object whose
type is equal to or a subtype of Common. To enable the
injected factories to return as abstract, information-less types
as possible, we first make the local variable types as abstract
as possible by means of type inference.

Type inference algorithms use type information from uses
and definitions to determine the best suited type for each local
variable. Definitions impose a lower bound on a type, uses
impose an upper bound. The algorithm by Gagnon et al. tries
to determine the most concrete possible type for each local
variable [26], because more concrete types can aid analyses
such as CHA [25] that rely on this type information.

Because more abstract types reduce the available informa-
tion, we adapted the algorithm to be use-driven instead of
definition-driven. When determining a type, we select an upper
bound for a local variable based on how it is used. We only use
information from definitions to disambiguate between multiple
possible upper bounds. For example, assume that method m1
in class B of Fig. 8 is implemented as in Fig. 9(a). The types
of x1 and x2 cannot be changed because they are assigned
objects of the untransformable type X. Classes C and E are
transformable, so the types of ¢ and e have been changed
to interface type |. With our type inference, the type of x1
becomes L, because x1 is only used by the invocation of
method mO defined in L. The type of x2 becomes B, because
x2 is only used by the invocation of method m1, which is
defined in B. The type of ¢ and e does not change, as m1 and
m2 are defined in I. Fig. 9(b) shows the resulting code.

B. Object factory creation

We replace object constructions by calls to factories. Let A
be the set of all classes and I the set of all interfaces of the
application. We extend ¢, and t* from AUL to U = AUI. For
each statement of the form x = new C(...), where C € A, and
the declared type of x is X, we perform the following steps.

First, we determine the properties of the factory method.
We construct U = {u € t,(X)Nt*(C) | u € Jo}, where
Jc is the jar or archive that contains class C. Given U, we
compute the return type of the factory method as

R = arg max |g(u)]
uelU

with ¢ : U — U* and q(u) = {d € ANts(u) | d € Jc}.
From R, we compute the set of constructors that will be
replaced by and embedded in the factory method as K =
{m € M(d) | d € ¢(R) A'm is a constructor}.

Secondly, given R and K, let RKFactory be the object
factory class with a method create with return type R that
can create objects using the constructors in K. If this class
does not exist yet, we create one in Jo. The parameter type
list of create consists of the combined parameter type lists of
the constructors in K and one or more extra parameters e.
Based on key values that are passed to the factory through e
and that identify the original allocation site, the body of the
create method invokes the original constructor. The relation
between the allocation site, the key passed and the invoked
constructor can be hidden behind hashing or white-box crypto.

Finally, replace x = new C(...) by a call to RKFactory.create().

For the example of Fig. 9(a), we create LFactory, BFactory,
and IFactory and rewrite allocations as in Fig. 9(b). Without
preprocessing, we would have created XFactory to handle the
object creations for x1 and x2. That factory would have had
the potential to return only seven different types. By contrast,
LFactory and BFactory can return 12 and 10 different types,
resp. For the media player, Fig. 2(c) shows the resulting code.

VI. EVALUATION

We implemented CHF, IM, and OFI in Soot 2.5.0 [27], [28],
an analysis and transformation framework for Java bytecode.
As our tool rewrites bytecode packaged in a collection of jar
files, it does not require access or changes to source code.

Our implementation consists of transformers and a refac-
toring toolkit. The transformers implement CHF, IM, and OFI
as a Soot SceneTransformer, such that they can be applied
together with Soot’s whole program transformations. Our
refactoring toolkit provides a series of refactoring transfor-
mations, including encapsulate field, rename field/method, and
variations of push down field/method and extract interface that
were required to implement CHF, IM and OFI [14]. In our
proof-of-concept tool, the dummy method bodies are empty.

A. Limitations and Restrictions

Clearly, our transformations build on a closed-world as-
sumption, as the whole program to be obfuscated needs to
be available for computing points-to sets. To detect the set of
non-transformable classes and to ensure that all Java features
like reflection and custom class loading are handled correctly
in our experiments, we relied on the TamiFlex Play-out Agent,
a tool developed specifically for enabling static analysis of
Java programs that use such features [29]. This profile-based
tool relies on the whole program to be available and on the
developer to provide inputs that generate enough coverage.

Alternatively, a developer can manually complement the
coverage of the TamiFlex Play-out Agent with his knowledge
of how the program depends on reflection and class loaders.
Because we want to evaluate the potential of fully automated
type obfuscation, including of third-party software, we chose
not to provide any such complementary information.

We know of no automated analysis that enables safe trans-
formations in the presence of arbitrary class loaders. So
we impose three restrictions on applications eligible for our
type obfuscations. First, the class loader hierarchy of the
applications does not change dynamically. Secondly, each class

e # application # transformable | # jar code size (MB)
Benchmark | Description classes interfaces classes (CHF) files | pre IO post 10
avrora simulates programs on a grid of AVR microcontrollers 1836 83 1657 (90%) 2 4.1 2.9
batik produces Scalable Vector Graphics using Apache Batik 3787 856 3383 (89%) 7 12.5 9.3
eclipse executes jdt performance tests for the Eclipse IDE 5213 1261 3886 (75%) 49 25.7 17.2
fop converts XSL-FI files to PDF 4033 446 3105 (77%) 8 11.0 8.8
h2 executes banking transactions against a database 1843 78 1454 (79%) 5 9.3 7.0
jython interprets the pybench Python benchmark 3702 166 941 (25%) 8 11.8 10.6
luindex indexes documents using Lucene 605 28 510 (84%) 4 1.9 1.2
lusearch performs text searches using Lucene 608 28 510 (84%) 4 1.9 1.2
pmd analyzes Java classes for source code problems 1999 451 1508 (75%) 7 5.6 44
sunflow renders a set of images using ray tracing 679 59 557 (82%) 3 2.0 1.6
tomcat executes queries against a Tomcat server 2173 268 1538 (71%) 27 10.1 7.1
xalan transforms XML documents into HTML 2460 426 2111 (86%) 6 9.6 7.6

TABLE II: Overview of DaCapo 9.12-bach benchmarks before and after Identifier Obfuscation (IO).

loader only loads classes and interfaces of which the definition
is known at obfuscation time. Finally, each class loader only
loads classes from a fixed set of directories, jars or other
archives. With these restrictions, we can determine exactly in
which directory or jar to insert new classes and interfaces such
that all of them will be loaded by the correct class loader.
By inserting interfaces and flattened classes into the existing
jars, rather than in new jars, the obfuscated application does
not need to be combined with class loading intervention
tools such as the TamiFlex Play-in Agent. Our obfuscated
applications are hence as self-contained as the original ones.

B. Benchmarks

We used the DaCapo 9.12 benchmark suite [30] to evaluate
the protection effectiveness and the performance efficiency
of our obfuscations. This suite consists of 14 real-world
applications ranging in size from medium to large. We opted
for the “9.12 bach” release of the DaCapo suite because the
TamiFlex tools have previously been tested on this version
(http://dacapobench.org/soot.html). Of the 14 benchmarks, 12
meet the above requirements on class loaders. Their main
properties are listed in Table II. Only eclipse and tomcat have
enough archives with few classes to have their obfuscation
significantly limited at the boundaries of archives. For all
but one benchmark the large majority of all classes is trans-
formable. The only exception is jython, a Python interpreter
that dynamically generates Java classes for the Python code
it interprets. As we cannot adapt that highly input-dependent
dynamic code generation, we cannot transform the static jython
classes referenced by the dynamically generated classes either.

As a baseline for comparison, we use the original DaCapo
bytecode, but with identifier names obfuscated [31]. Identifier
obfuscation (IO) is orthogonal to CHF, IM, and OFI; any Java
obfuscator would apply it. We applied it for our evaluation
baseline to present realistic results for obfuscated programs,
in particular with respect to code size and memory footprint,
both of which heavily depend on the length of identifiers.

From each baseline program, we generated versions with
and without CHF, and with and without OFI. On flattened
versions, we applied IM at subtree size threshold values of 0
(i.e., no IM), 10, 20, 30, 40 and 50. For each benchmark and
each of the 14 combinations of transformations and threshold
values, we generated ten different versions with different seeds
for the pseudo-random number generators used for bin packing
and MM. We report the average results for those ten versions.

C. Provided Protection

Like all obfuscation researchers, we face the problem of
measuring our techniques’ potency. And as in all of the
literature except a few studies involving human subjects, we
know of no direct metrics to measure the resistance to reverse-
engineering. So instead we rely on established software com-
plexity metrics from the domain of software engineering. Here,
we use the static QMOOQOD metrics from Bansiya et al. [32].
QMOOD stands for Quality Model for Object-Oriented De-
sign. It includes a metric for understandability that is defined
as a linear combination of other complexity metrics that
measure different aspects of a design, including abstraction,
encapsulation, coupling, cohesion, polymorphism, complexity,
and design size [32]. This understandability metric is a relative
metric that can only be used to compare two program versions.
Given an original program with a normalized understandability
score of -0.99 [32], less understandable versions will have
lower scores. Fig. 10 displays the relative understandability
for our benchmarks after CHF, IM with different thresholds,
and OFIL. Without OFI, the charts would be almost identical,
because OFI does not contribute significantly to the static
metrics considered in QMOOD. The charts show that CHF
and IM do reduce QMOOD understandability significantly,
with understandability dropping as more interfaces are merged.
Overall, there is little correlation between the QMOOD result
and the benchmark properties of Table II. For jython, with
only 25% of its classes transformed, the result is comparable
to benchmarks that have more than 70% of their classes
transformed. This illustrates the limitations of QMOOD.

As a representative sample, Fig. 11 shows the relative
contribution of the different QMOOD metrics to lusearch’s
understandability, for the same program versions as in Fig. 10.
Positive/negative contributions mean that higher/lower values
of a metric contribute to lower understandability. In the orig-
inal programs, all metrics contribute +33%. In combination
with the results for lusearch in Fig. 10, this chart shows that
most of the understandability reduction results from increases
in the amounts of coupling, polymorphism and complexity
as defined in QMOOD. As more IM is applied, the growing
QMOOD complexity, which basically equals the growing
number of (dummy) methods, becomes more dominant. Since
the dummy methods are empty in our current implementation,
the observed increase in QMOOD complexity does not reflect
a real complexity increase, however. So also in this regard, we
hit an important limitation of QMOOD. In summary, while

0.0

-2.0
-4.0
-6.0
-8.0
-10.0
-12.0

Relative increase

avrora

eclipse fop h2

jython

luindex lusearch sunflow tomcat xalan

Fig. 10: QMOQOD understandability

60%
50%
40%
30%
20%
10%
0%
-10%

Fig. 11: Contribution of QMOOD metrics for lusearch

(legend: see Fig. 10)

design size

encapsulation

cohesion

abstraction coupling polymorphism complexity

QMOOD metrics hint that our obfuscations provide some real
protection, QMOOD clearly needs to be combined with other
metrics before we can draw more conclusions.

To complement QMOOD, we evaluate the obfuscations’
ability to confuse static analyses. In practice, the precision
of many important client analyses, including call graph con-
struction and virtual call resolution, can drop significantly as
the result of an imprecise points-to analysis. At the same
time, the memory footprint and execution time of those
analyses increase with less precise points-to analysis because
the constructed call graphs become bigger. Hence, reducing the
precision of points-to analysis by causing it to return larger sets
will directly reduce the effectiveness and efficiency of several
static analyses that are fundamental for static attacks.

For this part of our evaluation, we relied on the more robust
and configurable T.J. Watson Libraries for Analysis (WALA,
http://wala.sf.net) to compute points-to sets using simple class
hierarchy analysis [25], context-insensitive 0-CFA [18], and
the partially context-sensitive, 0-1-CFA and 0-1-container-
CFA of WALA. Because of space concerns we only report
results obtained with 0-1-container-CFA, the strongest of the
four. To ensure that WALA'’s call graph construction includes
the program parts that are reachable through reflection, we
ran WALA on benchmark versions in which TamiFlex Booster
had replaced indirections through reflection by direct invoca-
tions [29]. Fig. 12 presents the average points-to set sizes for
all local variables and parameters of methods for the different
benchmark versions. Four key observations are to be made.

First, many points-to sets in jython are huge because of its
dynamic class generation. Its presence devastates precision of
the analysis in large parts of the program. Many points-to sets
become so large they are not meaningful anymore. CHF, IM,
and OFI can then not damage the analysis any further.

Secondly, the leftmost light bar of several other benchmarks
shows that the points-to sets do not always grow when only
OFI is applied. This results from the fact that the declared
return types of the inserted factories have very few subtypes
in the original class hierarchy. As such, they cannot obfuscate
a lot of type information. After CHF and aggressive IM, by

contrast, OFI always increases the points-to set sizes.

Thirdly, on some benchmarks CHF applied in isolation
reduces the average points-to set sizes. This is due to the
this pointers in methods of flattened classes, which by con-
struction have singleton points-to sets. As the methods’ first
implicit parameter, this pointers contribute to the computed
average points-to set sizes. Their negative effect is even more
pronounced because the inserted getters and setters are very
small methods that only contribute their this pointer but no
local variables or other parameters. A similar effect plays when
more aggressive IM is applied. In that case parameters added
during MM contribute very small points-to sets that bring
down the average sizes. Depending on the benchmark, CHF
and/or IM can or cannot obfuscate enough type information
in other places of the programs to compensate the effects of
the this pointers and of added parameters.

Fourthly, without OFI, even aggressive IM typically does
not make the points-to set grow. This is because WALA’s
advanced analysis can extract and propagate a lot of type
information from allocation sites. Only the obfuscation of that
information by OFI makes the points-to sets grow. The light
bars growing from left to right for each benchmark indicate
that OFI becomes more effective with more aggressive IM.

Combined, CHF, IM, and OFI increase the average points-to
set sizes (excl. jython) with a factor 4.67 on average, ranging
from a factor 1.78 for batik to a factor 11.98 for luindex.

D. Overhead

The dark bars in Fig. 13(a) show how code size grows with
more obfuscation. The lighter bars on top indicate the code
size saved by means of MM, i.e., what the size would be
without MM. As expected, more IM implies more code. The
increase in code size varies, but overall, the price of the obfus-
cations is quite large. For most benchmarks, MM works well.
The only exception is eclipse, where the unbounded merging
of parameter lists in our current implementation introduces
more overhead than the merging of methods actually saves.

The run-time overheads reported in Fig. 13(b,c) include all
10 runs of the benchmarks in their harness. This includes
the warm-up runs during which the JIT compiler is active.
Fig. 13(b) depicts the relative total number of bytes allocated
on the heap by the different program versions. As objects do
not grow in size because of our obfuscations, the obfuscated
programs require very little additional heap memory. When
more is needed, this mainly results from class loaders now
loading bigger class files. For pmd, the increase is caused
by the program analyzing its own bytecode by means of
the included ASM library (http://asm.ow2.org). Because the

[

20

‘ W original program, others: see Figure 10 }
]

15

10 —

5 —

o -

Average points—to set size

batik

avrora eclipse fop h2

jython

1
luindex

lusearch pmd sunflow tomcat xalan

Fig. 12: Average points-to set sizes. Dark bars denote sizes obtained without OFI, light bars denote sizes with OFI.

(a) Average relative code size. Dark bars denote actual code growth. Light bars indicate growth avoided by method merging. (Legend: see Fig. 10)

Relative increase

(b) Average heap memory allocated for storing objects and arrays. (Legend: see Fig. 10)

Relative increase

(c) Average non-heap memory high watermark. (Legend: see Fig. 10)

Relative increase

(d) Median relative execution time in steady state. (Legend: see Fig. 10)

Relative increase

batik

avrora eclipse fop h2

jython

luindex lusearch pmd sunflow tomcat xalan

Fig. 13: Overhead of the obfuscations. All metrics are relative to the original benchmarks.

program classes have grown, much more objects are allocated
on the heap for ASM’s internal bytecode representation. A
program taking itself as input in this way obviously constitutes
very atypical behavior, so its heap overhead is not representa-
tive of the overhead on other programs.

For some benchmarks, the amount of data allocated on
the heap does not increase monotonically with the amount of
IM. This is due to the sampling-based JIT compiler behaving
differently on different benchmark versions. Experiments with
JIT optimization levels vs. interpreted execution revealed that
less data is allocated on the heap when more aggressive
JIT compilation is used, because escape analysis enables the
allocation of data on the stack instead of the heap [33]. For
some benchmarks, like h2, the escape analysis accidentally
performs better on some more heavily obfuscated versions.

Fig. 13(c) depicts overhead in terms of the run-time non-
heap memory high-watermark. The non-heap memory is
mainly used to store code. The overhead is hence proportional
to the code size overhead. On average, the non-heap memory
is many times smaller than the heap. The run-time memory
footprint overhead of our obfuscations is hence limited.

In contrast with the previously discussed levels of overhead
and obfuscations, which do not depend on random seeds used,
we observed that the performance overhead can vary signifi-
cantly within a set of 10 benchmark versions generated with

identical IM thresholds, but with different random seeds. This
can be seen in Fig. 13(d), which shows the measured steady-
state performance overhead using standard box plots. For most
benchmarks, the performance overhead is very limited. For
eclipse, however, the median slowdown is 670%. For this
benchmark, additional measurements revealed that CHF is
responsible for 20-27 percentage points (pp), mainly because
of our instanceof replacement and to some extent also because
of the introduced getters and setters. As a flattened hierarchy
contains much more getter and setter implementations than
an unflattened one, they are inlined less efficiently by the JIT
compiler. OFI causes 56-393 pp of the slowdown. This grows
so much with increasing IM, because as factories become
more generic, they incorporate more constructors, of which all
parameter type lists are merged into the factories’ parameter
lists. The slowdown results from having to pass values for
all those parameters at all factory calls. Similarly, more IM
implies more MM, and hence also longer parameter lists,
resulting in an additional overhead of up to 250 pp.

From the variation in overhead observed for some versions
of eclipse, fop, h2, and xalan that were generated with different
random seeds but that feature similar levels of obfuscation, as
well as from the fact that the unbounded application of MM
did not benefit eclipse’s code size, we learn that there is a
lot of potential for reducing the overhead of our obfuscations

by making the currently partially randomized and unbounded
application of merging more tuned, controlled, and limited.

VII. CORRECTNESS, RELIABILITY AND MAINTAINABILITY

A formal validation of CHF, IM, and OFI is out of the scope
of this paper. Several observations can, however, increase
confidence in their soundness and preservation of program
semantics. First of all, we checked that all benchmark versions
passed type verification and produced correct output. These
checks were not limited to the 12x14x10 versions reported in
the previous section. We also checked many other versions
generated while studying alternative heuristics for IM and
MM, some of which were reported in our previous work [34],
as well as intermediate program versions generated by the
individual transformation steps discussed in sections III, IV,
and V. All of these experiments were stressing Soot, WALA,
and TamiFlex beyond their pre-existing capabilities, so we had
to fix numerous bugs in these tools. One debugging technique
consisted of comparing the constructed call graphs and points-
to sets of the programs boosted with TamiFlex before and
after the obfuscations. Once we had fixed all bugs, we verified
that the graphs and sets obtained after obfuscation completely
cover the graphs and sets before obfuscations.

Regarding the TamiFlex Play-out Agent and Booster, we
point to the literature for a discussion of their validity [29].

As mentioned in Section VI, our obfuscations are quite sim-
ilar to existing refactorings [14], [15], [35]. Tip et al. express
the valid refactoring space by means of type constraints [15].
Based on the original program’s code and points-to sets, a set
of type constraints is constructed that constrain the types that
can be used in the program’s declaration. These constraints
determine the freedom to alter declarations in the program
without affecting type correctness and without changing the
program’s functionality, taking into account the interfaces
with external libraries that cannot be rewritten, occurrences
of shadowing and overriding, the dynamic behavior of casts
and array stores, etc. From this original set of constraints,
a new set of constraints is derived that needs to be met by
a refactored program. For advanced refactorings that involve
code duplication and/or replacing classes by other classes
with equivalent functionality, the new set of constraints allows
original methods and classes to be replaced by their new
counterparts while still meeting all constraints related to type-
correctness, libraries, and all dynamic program behavior.

While we did not implement a type constraint system and
solver as done by Tip et al., we did carefully check that the
limitations imposed on our obfuscations, e.g., with respect to
external library types, are in line with the constraints imposed
by Tip et al. We also checked that the bytecode produced
by our tool, incl. the rewritten cast operations and merged
methods, meets all requirements for maintaining program
behavior, i.e., that at all places and at all times, the same
exceptions will be thrown as in the original program, and that
the same or equivalent (e.g., merged) methods are invoked.

Finally, the class loader restrictions imposed in Sec-
tion VI-A allow us to ensure that each flattened class is
loaded by the exact same class loader that originally loaded

its unflattened counterpart. As our obfuscations don’t require
any changes to where code is loaded from, who signs code
(if anyone), and what default permissions are granted, this
ensures that all security policies, domains and permissions
implemented for the original application by means of the Java
SE Platform Security Architecture [36] remain intact.

To facilitate further validation and testing, researchers can
obtain our source code and benchmarks upon simple request.

Besides providing obfuscation and introducing overhead,
our transformations come with some important side effects.

User bug reports on obfuscated programs are harder to
interpret. However, since there is a 1-to-m mapping between
the classes, methods and fields in the original program and
those in the obfuscated program, it is straightforward to
translate back traces from the obfuscated to the original code.

As our transformations alter the execution speed of different
code fragments differently, they may expose or hide race
conditions in multithreaded code. In this regard, our trans-
formations do not differ from any other static or JIT code
optimization, or any virtual machine tuning.

Finally, our obfuscations have limited impact on maintain-
ability. Being applied on the bytecode after testing and right
before the code is distributed to customers, the obfuscations
do not affect the source developer directly. However, since the
obfuscations build on whole-program analysis, simple patches
in one class’ source code require the reapplication of the
obfuscation to the whole program, which may well result in
changes to most of the obfuscated bytecode. So distributing
updates might require more bandwidth.

VIII. RELATED WORK

Compared to a preliminary presentation of CHF [34], this
paper presented results obtained with a more complete, mature
prototype tool. For example, the tool used here was able
to flatten 75% of the classes in eclipse, compared to 38%
before. We also evaluated more benchmarks, and used more
advanced points-to analyses. This explains the sometimes
different results presented here. Whereas the preliminary re-
port only included the notion of IM with a very preliminary
implementation, this paper combined CHF with an optimized
IM process that includes method merging, as well as OFIL.

As far as we know, we are the first to automate class hierar-
chy obfuscations in a tool that can handle complex applications
that heavily use reflection and custom class loading.

To obfuscate an application’s design, its class hierarchy
and the type information contained in its code, Sosonkin et
al. proposed class coalescing, class splitting, and type hiding
by introducing interface types and by replacing declarations
of class types with declarations of those interfaces [13]. In
its most extreme form, their class coalescing transformation
can coalesce all transformable classes in the program into a
single class, effectively removing the whole program design;
beyond what CHF can achieve. For example, when all classes
are coalesced, all points-to sets become singletons that contain
all types in the program. In other words, points-to sets become
completely useless. The main disadvantage of class coalescing
is that the number of member fields in coalesced classes

grows far beyond the number of original member fields in the
original classes and all their superclasses. As a result, their
instances also grow bigger, which results in a much larger
memory footprint. The authors acknowledge this potential
issue, but their experimental evaluation is limited to execution
time measurements of relatively small and simple programs
(up to 307 classes). For those, they measure slow-downs up
to 130% even with limited coalescing.

CHF can be combined with class coalescing. In particular,
CHF enables more efficient coalescing. Coalescing MP3File
and VideoStream in Fig. 1 would require MediaFile and
MediaStream to be coalesced as well. This would increase the
number of fields in all classes that inherit from the coalesced
class. After CHF, MP3File and VideoStream can be coalesced
without affecting the size of objects of other classes.

The false factoring transformation by Collberg et al. [4]
refactors a program in such a way that two or more unre-
lated classes come to share a superclass, thereby giving the
impression that they are related. We know of no public tool
implementing this proposal or of any experimental evaluation.
CHF can prepare a program for false factoring [4]. In Fig. 3
all classes inherit directly from java.lang.Object and dependen-
cies on the original inheritance relations have already been
removed, so the classes can easily be reorganized in a fake
hierarchy by inserting random superclasses.

Given a set of transformable classes, the obfuscation tech-
niques introduced by Sakabe et al. [10] first change the
signature of all methods in the classes such that each class
implements the same set of overloaded methods. These meth-
ods are then defined in an interface implemented by the classes
and used in declarations instead of the original classes. To hide
the actual type of objects bound to variables of the interface
type, they propose to replace single object creations by a set
of object creations guarded by opaque predicates.

Like Sakabe et al., we use interfaces as common super
types. To limit the number of methods in these interfaces,
their approach requires the use of special parameter and return
objects that have to be created for each method call and return.
Because this can result in large run-time overheads, we instead
use method merging to make method signatures more uniform.
This generally has a much smaller performance impact. Our
OFI also differs from their type hiding transformation. First,
we use factory methods rather than inline code to create new
objects. These factories can become larger and more complex
without inflating the code too much. Additionally, because of
our custom type inference, each factory we create can return
the maximum number of possible types of objects.

Snelting and Tip [37], [38] presented a method for analyzing
and re-engineering class hierarchies by extracting information
on the use of an application’s class hierarchy, from which
they construct a concept lattice that provides insights on how
to improve the hierarchy to better match the way the classes
interact. Their analysis can detect where class members can
be moved to a subclass or identify where it is beneficial to
split classes. This analysis has been extended and implemented
in the refactoring tool KABA [35]. This tool uses the results
from the concept analysis to present several refactorings to the
user, who can then interactively modify the class hierarchy.

Potentially, Snelting and Tip’s work could help an attacker
find related classes in a flattened hierarchy by allowing him
to see through the smokescreen of specially crafted dummy
method implementations and by detecting unrelated classes
implementing merged interfaces. It remains an open question
to assess to which extent their tool would be useful in practice.
Another attack approach could build on diffing tools such
as Stigmata (http://stigmata.sourceforge.jp). Such tools can
assist in inferring the original class hierarchy by identifying
duplicated methods and fields in the flattened classes. To
distract such tools, we could introduce artificial differences or
similarities by choosing appropriate dummy method bodies.
So far, this section focused on related work that involves
class hierarchy transformations. That work, like CHF, IM,
and OFI has little in common with the decompilation, iden-
tifier, data flow, and control flow obfuscations mentioned
in Section I. In fact, the different types of obfuscation are
mostly complementary. CHF, IM, and OFI do not hinder
decompilation in any way, and neither do they aim for getting
nasty decompiled code. They only aim for bytecode (and
corresponding decompiled source code) that provides as little
as possible static type information. Moreover, we combined
them with identifier obfuscation for our experimental evalua-
tion. Still, it is noteworthy that our transformations’ resulting
larger points-to sets and larger call graphs likely open up
opportunities for alias-based obfuscations [4], [6], [31], [39].

IX. CONCLUSIONS AND FUTURE WORK

With CHEF, IM, and OFI, we presented three obfuscations
for object-oriented programs written in managed programming
languages. With a prototype implementation, we obfuscated
real-world Java programs that feature reflection and custom
class loading. The experiments demonstrated that all three
transformations are needed in order to achieve good results.
Combined, they provide measurable protection against both
human understandability and automated program analysis.
QMOOD understandability decreased with factors 7-11, and
average points-to set sizes increased with factors 2—12.

These obfuscations were typically, but not always, obtained
with low performance and memory footprint overhead, but at
a significant code size overhead of up to a factor 6. A simple
method to trade off overhead for protection is available, as one
can easily tune the number of interfaces merged during IM.

We envision future work in two directions: stronger pro-
tection and reduced overhead. First, we see a lot of potential
in alternative IM strategies that do not focus on filling bins
but instead focus on maximal obfuscation. Such strategies
could, e.g., try to estimate the effect of merging different
interface combinations on points-to set sizes. Alternatively, IM
could be driven by a developer’s categorization of more and
less sensitive code portions. Furthermore, the larger points-to
sets and larger call graphs obtained after our transformations
open up opportunities for alias-based program obfuscations.
Different combinations of such techniques should be explored.

The large variations in performance overhead observed for
different versions of some benchmarks with similar levels
of obfuscation, all of which were generated with a partially

randomized decision logic, and the lack of code size improve-
ment through MM for one benchmark, suggest a potential
for reducing our obfuscations’ overhead. We plan to make

M

cost-aware by taking into account MM opportunities

during IM, rather than considering MM an afterthought as
in our current implementation. Furthermore, machine-learning
techniques and profile information will be useful to limit the
application of MM and OFI in situations where the resulting
overhead as a result of parameter list merging becomes too
high without contributing much to the achieved obfuscation.

(1]
(2]
(3]
(4]
[5]

(6]

(71

(8]
[9]
[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

REFERENCES

S. Holst, “Assessing and managing security risks unique to Java and
.NET,” ISSA J., 2009.

J.-T. Chan and W. Yang, “Advanced obfuscation techniques for Java
bytecode,” J. of Syst. and Software, vol. 71, no. 1-2, pp. 1-10, 2004.
T. Hou et al., “Three control flow obfuscation methods for Java
software,” IEE Proc.-Software, vol. 153, no. 2, pp. 80-86, Apr 2006.
C. Collberg et al., “A taxonomy of obfuscating transformations,” Uni-
versity of Auckland, Tech. Rep., 1997.

Y. Zhou et al., “Information hiding in software with mixed boolean-
arithmetic transforms,” in Proc. Int. Conf. on Inf. Security Applicat.,
2007, pp. 61-75.

C. Collberg et al., “Manufacturing cheap, resilient, and stealthy opaque
constructs,” in Proc. ACM SIGPLAN-SIGACT Symp. on Principles of
Program. Lang., 1998, pp. 184-196.

A. Majumdar and C. Thomborson, “Manufacturing opaque predicates in
distributed systems for code obfuscation,” in Proc. Australasian Comput.
Sci. Conf., 2006, pp. 187-196.

A. Majumdar et al., “A survey of control-flow obfuscations,” in Int.
Conf. on Inf. Syst. Security, 2006, pp. 353-356.

J. Palsberg et al., “Experience with software watermarking,” in Proc.
Annu. Computer Security Applicat. Conf., 2000, pp. 308-316.

Y. Sakabe et al., “Java obfuscation approaches to construct tamper-
resistant object-oriented programs,” IPSJ Digital Courier, vol. 1, pp.
349-361, 2005.

A. P. R. Venkatraj, “Program obfuscation,” Master’s thesis, University
of Arizona, 2003.

M. Batchelder and L. Hendren, “Obfuscating Java: the most pain for the
least gain,” in Proc. Int. Conf. on Compiler Constr., 2007, pp. 96-110.
M. Sosonkin et al., “Obfuscation of design intent in object-oriented
applications,” in Proc. ACM Workshop on Digital Rights Management,
2003, pp. 142-153.

M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

F. Tip et al., “Refactoring using type constraints,” ACM Trans. Program.
Lang. Syst., vol. 33, no. 3, pp. 9:1-9:47, 2011.

B. Bellamy et al., “Efficient local type inference,” in Proc. ACM
SIGPLAN Conf. on Object-Oriented Program. Syst. Lang. and Applicat.,
2008, pp. 475-492.

M. Sridharan and R. Bodik, “Refinement-based context-sensitive points-
to analysis for Java,” in Proc. ACM SIGPLAN Conf. on Program. Lang.
Design and Implementation, 2006, pp. 387-400.

D. Grove et al., “Call graph construction in object-oriented languages,”
in Proc. ACM SIGPLAN Conf. on Object-Oriented Program., Syst.,
Lang., and Applicat., 1997, pp. 108-124.

M. Hind and A. Pioli, “Evaluating the effectiveness of pointer alias
analyses.” Sci. of Comput. Program., vol. 39, no. 1, pp. 31-55, 2001.
B. G. Ryder, “Dimensions of precision in reference analysis of object-
oriented programming languages,” in Proc. Int. Conf. on Compiler
Construction, Warsaw, Poland, 2003, pp. 126-137.

E. McCluskey, Introduction to the theory of switching circuits. McGraw
Hill Text, 1965.

S. Chow et al., “White-box cryptography and an AES implementation,”
in Revised Papers Int. Workshop on Selected Areas in Cryptography,
2003, pp. 250-270.

D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 1973.

E. Gamma et al., Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

J. Dean et al., “Optimization of object-oriented programs using static
class hierarchy analysis,” in Proc. European Conf. on Object-Oriented
Program., 1995, pp. 77-101.

[26]

[27]

[28]

[29]

(30]

(311

(32]

(33]

[34]

[35]

(36]

(371

(38]

[39]

E. Gagnon et al., “Efficient inference of static types for Java bytecode,”
in Proc. Int. Symp. on Static Analysis. Springer, 2000, pp. 199-219.
P. Lam et al, “The Soot framework for Java program analysis: a
retrospective,” in Cetus Users and Compiler Infrastructure Workshop,
Oct. 2011.

R. Vallée-Rai et al., “Soot - a Java bytecode optimization framework,”
in Proc. Conf. of the Centre for Adv. Stud. on Collaborative Research,
1999, pp. 125-135.

E. Bodden ef al, “Taming reflection: Aiding static analysis in the
presence of reflection and custom class loaders,” in Proc. Int. Conf.
on Software Eng., 2011, pp. 241-250.

S. M. Blackburn er al,, “Wake up and smell the coffee: evaluation
methodology for the 21st century,” Communications of the ACM, vol. 51,
no. 8, pp. 83-89, Aug. 2008.

C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Addison-Wesley
Professional, 2009.

J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp.
4-17, Jan. 2002.

P. Molnar, A. Krall, and F. Brandner, “Stack allocation of objects in the
CACAO virtual machine,” in Proc. Int. Conf. on Principles and Practice
of Programming in Java, 2009, pp. 153-161.

C. Foket et al., “A novel obfuscation: class hierarchy flattening,” in Proc.
Int. Symp. on Foundations and Practice of Security, 2012, pp. 194-210.
M. Streckenbach and G. Snelting, “Refactoring class hierarchies with
KABA,” in Proc. ACM SIGPLAN Conf. on Object-Oriented Program.,
Syst., Lang., and Applicat., 2004, pp. 315-330.

L. Gong, Java™ SE Platform Security Architecture, [Online] Available:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/
security-spec.doc.html.

G. Snelting and F. Tip, “Reengineering class hierarchies using concept
analysis,” in Proc. ACM SIGSOFT Int. Symp. on Foundations of Software
Eng., 1998, pp. 99-110.

, “Understanding class hierarchies using concept analysis,” ACM
Trans. Program. Lang. Syst., vol. 22, no. 3, pp. 540-582, May 2000.
A. Majumdar et al., “On evaluating obfuscatory strength of alias-
based transforms using static analysis,” in Proc. Int. Conf. Advanced
Computing and Communications, 2006, pp. 605-610.

Christophe Foket is a Ph.D. student at Ghent Uni-
versity in the Computer Systems Lab. He obtained
his Bsc. degree in Informatics from Ghent Univer-
sity’s Faculty of Sciences in 2007 and his Msc.
degree in Computer Science from Ghent University’s
Faculty of Engineering in 2009. His research focuses
on obfuscation of bytecode applications to defend
against reverse engineering and code lifting attacks.

Bjorn De Sutter is a professor at Ghent University
in the Computer Systems Lab. He obtained his Msc.
and Ph.D. degrees in Computer Science from Ghent
University’s Faculty of Engineering in 1997 and
2002. His research focuses on the use of compiler
techniques to aid programmers with non-functional
aspects of their software, such as performance, code
size, reliability, and software protection.

Koen De Bosschere is professor at the Engineer-
ing School of Ghent University, Belgium where
he teaches courses on computer architecture and
operating systems. His research interests are binary
translation, virtualization, and software protection.
He authored and co-authored over 170 peer-reviewed
papers. He is the coordinator of HIPEAC, the Euro-
pean Network of Excellence on High Performance
and Embedded Architecture and Compilation and of
the yearly ACACES summer school.

