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Abstract— This note describes a correction to the paper entitled
“Accurate Statistical Approaches for Generating Representative
Workload Compositions” published at the 2005 IEEE Interna-
tional Symposium on Workload Characterization in October 2005
in Austin, TX. The above paper stated that Independent Compo-
nents Analysis (ICA) is a better alternative to Principal Compo-
nents Analysis (PCA) for generating representative workloads.
The ICA algorithm that we used in our study performs PCA
prior to an orthogonal rotation for maximizing independence.
As a result, PCA and the ICA algorithm should in fact perform
equally well for composing representative workloads. This is only
the case for the ICA algorithm that we used though; this is not
a general statement about ICA versus PCA. However, due to
a misunderstanding of the ICA software, we took this erronous
conclusion. This is rectified in this correction note and we discuss
what the results in the previously published paper really showed,
namely that an appropriate weighting of the input variables can
have a beneficial impact on the workload composition quality.

I. STATISTICAL DATA ANALYSIS TECHNIQUES

This section revisits principal components analysis (PCA),
independent components analysis (ICA) and cluster analysis
(CA). We will refer to the original data matrix as matrix X in
which the rows are the benchmarks and the columns are the
program characteristics.

A. Principal Components Analysis (PCA)

Principal Components Analysis (PCA) [1] transforms
p variables X1, X2, . . . , Xp into p principal components
Z1, Z2, . . . , Zp with Zi =

∑p

j=1
aij · Xj . This transforma-

tion has the following important properties: (i) V ar[Z1] ≥
V ar[Z2] ≥ . . . ≥ V ar[Zp]; and (ii) Cov[Zi, Zj ] = 0, ∀i 6= j.
Note that the total variation in the data remains the same
before and after the transformation, namely:

∑p

i=1
V ar[Xi] =∑p

i=1
V ar[Zi]. After PCA analysis, the principal components

are normalized, i.e., the mean of each principal component
equals zero, and the standard deviation equals one. Mathe-
matically speaking, PCA solves the eigenvalue problem over
the correlation matrix. The PCA transformation can also
be expressed in a matrix notation: Z = A · X such that
E{Z · ZT } = I .

The software that we use for applying PCA, STATIS-
TICA [2], allows for applying PCA on normalized data as
well as on non-normalized data, i.e., the software allows for
automatically normalizing the data set prior to analysis. The
default option of the software is to normalize prior to PCA;

in our work we use this default option. We refer to the
normalized original data matrix as Xn, i.e., in Xn the columns
have a unit-variance and the mean is zero. So, in fact, the
principal components that we obtain are computed as follows:
Z = A · Xn such that E{Z · ZT } = I .

B. Independent Components Analysis (ICA)

Independent Components analysis (ICA) [3] assumes that
the original data matrix is centered, i.e., the data set must
be transformed so that the means along the columns in the
data matrix are zero. We refer to this matrix as Xzm; note
that Xzm 6= Xn. Some ICA algorithms, including the one we
used, first perform PCA on Xzm: Z = A · Xzm such that
E{Z ·ZT } = I . As a second step, these ICA algorithms then
transform the data set Z obtained from PCA into S using an
orthogonal transformation: S = K · Z. This transformation
maximizes the independence between the dimensions in the
transformed space. Since we assume that the independent
components Si have unit variance, the transformation K is
orthogonal because E{S · ST } = K · E{Z · ZT } · KT =
K ·KT = I . In other words, the transformation done through
the K matrix is an orthogonal rotation. Note that this is only
the case for some ICA algorithms, including the one that we
used in our experiments.

The software that we use for applying ICA, the FastICA
package for Matlab1, centers the original data matrix but does
not normalize the data set, i.e., the mean for each column is
zero but has a non-unit variance. This is a subtle but important
difference which is the root cause of our erroneous results in
the published paper as will be made clear later in this note.

C. Cluster Analysis

The next step in our workload composition methodology is
to apply cluster analysis [1] on the transformed data set—
note that we can apply cluster analysis in both the PCA
and ICA spaces. The final goal is to obtain a number of
groups containing various benchmarks that exhibit ‘similar’
behavior. This clustering is done based on the Euclidean
distance between data points.

1http://www.cis.hut.fi/projects/ica/fastica/



II. WHAT WENT WRONG?

A important step in our methodology is that the transfor-
mations (both PCA and ICA) start from a normalized data
matrix due to the heterogeneity of the data set. Some program
characteristics, such as ILP, vary in the range of tens, whereas
other program characteristics vary in the range of fractions
smaller than 1, such as the cache miss rates. Normalization
puts all the program characteristics on a common scale. In
the above example, measuring benchmark similarity through
clustering using non-normalized data would give a higher
weight to the ILP metric than to the cache miss rate metrics.

For PCA we used the (default) normalization as desired.
For ICA on the other hand, we erroneously assumed that the
software also normalizes the data (by default) prior to PCA.
This turned out not to be true though; the software only centers
the data set. As a result, PCA and ICA operated on different
data sets which was not our intention and which skewed the
results substantially.

III. WHAT SHOULD THE DATA HAVE LOOKED LIKE?

If the analyses would have been done according to our
intention, i.e., both the input matrices for PCA and ICA
are normalized, we would not have observed a difference
in the final clustering results between PCA and ICA. The
reason is that the ICA implementation that we used does an
orthogonal rotation on the data set obtained from PCA. This
orthogonal rotation preserves the Euclidean distance between
data points, i.e., the distance between two data points after
PCA equals the distance between two data points after ICA.
And since clustering works on the Euclidean distance between
data points, there should not be a difference between the
clustering result after PCA and ICA. After correcting our setup
we indeed verified that PCA and ICA yield the same clustering
results.

Note again that this conclusion applies only to the ICA
algorithm that we used. For other ICA algorithms that do not
apply PCA prior to an orthogonal rotation, other conclusions
may be reached, i.e., ICA and PCA may yield different
clustering results.

IV. WHAT DID THE DATA REALLY SHOW?

The results presented in the published paper showed im-
provements in terms of workload accuracy and workload size.
The obvious question then is, what did these results really
show? It turned out that the original data matrix was not
normalized and that due to various analyses prior to this study,
most variables in the data matrix showed a standard deviation
around 1 except for the data stream characteristics. The data
stream variables had a significantly smaller standard deviation
ranging between 0.3 and 0.6. For PCA, this was rectified
by the software which normalized the data prior to analysis.
This was not the case for ICA. As a result, the data stream
characteristics had a smaller impact on the overall clustering
in ICA. Apparently, this yields better workload composition
results for the given data set.

What we learn from this experience is that giving a higher
weight to particular variables in the PCA and ICA analyses
can have an important impact on the clustering result. In fact,
the composed workload can be significantly better in terms
of accuracy and size by giving higher weight to workload
characteristics that (apparently) correlate stronger with overall
performance. In conclusion, an interesting direction for fu-
ture research would be to determine how weights should be
assigned to the various workload characteristics to obtain a
clustering of benchmark programs that satisfies a desired set
of constraints.
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